ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Simulation of a Quantum Stochastic Walk

107   0   0.0 ( 0 )
 نشر من قبل Luke Govia
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The study of quantum walks has been shown to have a wide range of applications in areas such as artificial intelligence, the study of biological processes, and quantum transport. The quantum stochastic walk, which allows for incoherent movement of the walker, and therefore, directionality, is a generalization on the fully coherent quantum walk. While a quantum stochastic walk can always be described in Lindblad formalism, this does not mean that it can be microscopically derived in the standard weak-coupling limit under the Born-Markov approximation. This restricts the class of quantum stochastic walks that can be experimentally realized in a simple manner. To circumvent this restriction, we introduce a technique to simulate open system evolution on a fully coherent quantum computer, using a quantum trajectories style approach. We apply this technique to a broad class of quantum stochastic walks, and show that they can be simulated with minimal experimental resources. Our work opens the path towards the experimental realization of quantum stochastic walks on large graphs with existing quantum technologies.

قيم البحث

اقرأ أيضاً

Quantum Stochastic Walks (QSW) allow for a generalization of both quantum and classical random walks by describing the dynamic evolution of an open quantum system on a network, with nodes corresponding to quantum states of a fixed basis. We consider the problem of quantum state discrimination on such a system, and we solve it by optimizing the network topology weights. Finally, we test it on different quantum network topologies and compare it with optimal theoretical bounds.
Multi-dimensional quantum walks can exhibit highly non-trivial topological structure, providing a powerful tool for simulating quantum information and transport systems. We present a flexible implementation of a 2D optical quantum walk on a lattice, demonstrating a scalable quantum walk on a non-trivial graph structure. We realized a coherent quantum walk over 12 steps and 169 positions using an optical fiber network. With our broad spectrum of quantum coins we were able to simulate the creation of entanglement in bipartite systems with conditioned interactions. Introducing dynamic control allowed for the investigation of effects such as strong non-linearities or two-particle scattering. Our results illustrate the potential of quantum walks as a route for simulating and understanding complex quantum systems.
Numerical methods for the 1-D Dirac equation based on operator splitting and on the quantum lattice Boltzmann (QLB) schemes are reviewed. It is shown that these discretizations fall within the class of quantum walks, i.e. discrete maps for complex fi elds, whose continuum limit delivers Dirac-like relativistic quantum wave equations. The correspondence between the quantum walk dynamics and these numerical schemes is given explicitly, allowing a connection between quantum computations, numerical analysis and lattice Boltzmann methods. The QLB method is then extended to the Dirac equation in curved spaces and it is demonstrated that the quantum walk structure is preserved. Finally, it is argued that the existence of this link between the discretized Dirac equation and quantum walks may be employed to simulate relativistic quantum dynamics on quantum computers.
125 - S. Panahiyan , S. Fritzsche 2020
We simulate various topological phenomena in condense matter, such as formation of different topological phases, boundary and edge states, through two types of quantum walk with step-dependent coins. Particularly, we show that one-dimensional quantum walk with step-dependent coin simulates all types of topological phases in BDI family, as well as all types of boundary and edge states. In addition, we show that step-dependent coins provide the number of steps as a controlling factor over the simulations. In fact, with tuning number of steps, we can determine the occurrences of boundary, edge states and topological phases, their types and where they should be located. These two features make quantum walks versatile and highly controllable simulators of topological phases, boundary, edge states, and topological phase transitions. We also report on emergences of cell-like structures for simulated topological phenomena. Each cell contains all types of boundary (edge) states and topological phases of BDI family.
We design a quantum probing protocol using Quantum Walks to investigate the Quantum Information spreading pattern. We employ Quantum Fisher Information, as a figure of merit, to quantify extractable information about an unknown parameter encoded with in the Quantum Walk evolution. Although the approach is universal, we focus on the coherent static and dynamic disorder to investigate anomalous and classical transport as well as Anderson localization. Our results show that a Quantum Walk can be considered as a readout device of information about defects and perturbations occurring in complex networks, both classical and quantum.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا