ﻻ يوجد ملخص باللغة العربية
Multi-dimensional quantum walks can exhibit highly non-trivial topological structure, providing a powerful tool for simulating quantum information and transport systems. We present a flexible implementation of a 2D optical quantum walk on a lattice, demonstrating a scalable quantum walk on a non-trivial graph structure. We realized a coherent quantum walk over 12 steps and 169 positions using an optical fiber network. With our broad spectrum of quantum coins we were able to simulate the creation of entanglement in bipartite systems with conditioned interactions. Introducing dynamic control allowed for the investigation of effects such as strong non-linearities or two-particle scattering. Our results illustrate the potential of quantum walks as a route for simulating and understanding complex quantum systems.
The study of quantum walks has been shown to have a wide range of applications in areas such as artificial intelligence, the study of biological processes, and quantum transport. The quantum stochastic walk, which allows for incoherent movement of th
This paper studies the quantum dynamics of a charged particle in a 2D square lattice, under the influence of electric and magnetic fields, the former being aligned with one of the lattice axes and the latter perpendicular to the lattice plane. While
We study the decoherence effects originating from state flipping and depolarization for two-dimensional discrete-time quantum walks using four-state and two-state particles. By quantifying the quantum correlations between the particle and position de
We present a scheme to describe the dynamics of accelerating discrete-time quantum walk for one- and two-particle in position space. We show the effect of acceleration in enhancing the entanglement between the particle and position space in one-parti
We present an investigation of many-particle quantum walks in systems of non-interacting distinguishable particles. Along with a redistribution of the many-particle density profile we show that the collective evolution of the many-particle system res