ﻻ يوجد ملخص باللغة العربية
We introduce a concept of a fractional-derivatives series and prove that any linear partial differential equation in two independent variables has a fractional-derivatives series solution with coefficients from a differentially closed field of zero characteristic. The obtained results are extended from a single equation to $D$-modules having infinite-dimensional space of solutions (i. e. non-holonomic $D$-modules). As applications we design algorithms for treating first-order factors of a linear partial differential operator, in particular for finding all (right or left) first-order factors.
We study {it non-holonomic} overideals of a left differential ideal $Jsubset F[partial_x, partial_y]$ in two variables where $F$ is a differentially closed field of characteristic zero. The main result states that a principal ideal $J=< P>$ generated
On a complex manifold, the embedding of the category of regular holonomic D-modules into that of holonomic D-modules has a left quasi-inverse functor $mathcal{M}mapstomathcal{M}_{mathrm{reg}}$, called regularization. Recall that $mathcal{M}_{mathrm{r
Let f be a quasi-homogeneous polynomial with an isolated singularity. We compute the length of the D-modules $Df^c/Df^{c+1}$ generated by complex powers of f in terms of the Hodge filtration on the top cohomology of the Milnor fiber. For 1/f we obtai
For modules over group rings we introduce the following numerical parameter. We say that a module A over a ring R has finite r-generator property if each f.g. (finitely generated) R-submodule of A can be generated exactly by r elements and there exis
In this paper, we show how the non-holonomic control technique can be employed to build completely controlled quantum devices. Examples of such controlled structures are provided.