ترغب بنشر مسار تعليمي؟ اضغط هنا

{Pi} Band Dispersion along Conjugated Organic Nanowires Synthesized on a Metal Oxide Semiconductor

75   0   0.0 ( 0 )
 نشر من قبل Dimas G. De Oteyza
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Surface confined dehalogenation reactions are versatile bottom-up approaches for the synthesis of carbon-based nanostructures with predefined chemical properties. However, for devices generally requiring low conductivity substrates, potential applications are so far severely hampered by the necessity of a metallic surface to catalyze the reactions. In this work we report the synthesis of ordered arrays of poly(p-phenylene) chains on the surface of semiconducting TiO2(110) via a dehalogenative homocoupling of 4,4-dibromoterphenyl precursors. The supramolecular phase is clearly distinguished from the polymeric one using low energy electron diffraction and scanning tunneling microscopy as the substrate temperature used for deposition is varied. X ray photoelectron spectroscopy of C 1s and Br 3d core levels traces the temperature of the onset of dehalogenation to around 475 K. Moreover, angle-resolved photoemission spectroscopy and tight-binding calculations identify a highly dispersive band characteristic of a substantial overlap between the precursors {pi} states along the polymer, considered as the fingerprint of a successful polymerization. Thus, these results establish the first spectroscopic evidence that atomically precise carbon based nanostructures can readily be synthesized on top of a transition-metal oxide surface, opening the prospect for the bottom-up production of novel molecule-semiconductor devices.


قيم البحث

اقرأ أيضاً

Following the recent discovery of large magnetoresistance at room temperature in polyfluorence sandwich devices, we have performed a comprehensive magnetoresistance study on a set of organic semiconductor sandwich devices made from different pi-conju gated polymers and small molecules. The measurements were performed at different temperatures, ranging from 10K to 300K, and at magnetic fields, $B < 100mT$. We observed large negative or positive magnetoresistance (up to 10% at 300K and 10mT) depending on material and device operating conditions. We compare the results obtained in devices made from different materials with the goal of providing a comprehensive picture of the experimental data. We discuss our results in the framework of known magnetoresistance mechanisms and find that none of the existing models can explain our results.
444 - Lin Xiong , Li-Ming Wu , 2021
Current nonlinear optical materials face a conventional limitation on the tradeoff between band gap and birefringence, especially in the deep UV spectral region. To circumvent such a dilemma, we propose a general principle, a {pi}-conjugated confinem ent, to partially decouple the inter group {pi}-conjugated interactions with the separation of a non-{pi}-conjugated group so as to maximize the band gap in comparison with those of simple {pi}-conjugated salts, such as borates, carbonates. Meanwhile, to maintain a large optical anisotropy. We uncover that the {pi}-conjugated confinement is a shared structural feature for all the known DUV NLO materials with favorable properties (45 compounds), and thus, it provides an essential design criterion. Guided by this principle, the carbonophosphate is predicted theoretically for the first time as a promising DUV candidate system, Sr3Y[PO4][CO3]3 and Na3X[PO4][CO3] (X = Ba, Sr, Ca, Mg) exhibit an enhanced birefringence that is 3-24 times larger than that of the simple phosphate, as well as an increased band gap that is 0.2-1.7 eV wider than that of the simple carbonate. Especially, the shortest SHG output of Sr3Y[PO4][CO3]3 is at {lambda}PM = 181 nm, being the shortest one among phosphates to date.
Adsorption of organic molecules on well-oriented single crystal coinage metal surfaces fundamentally affects the energy distribution curve of ultra-violet photoelectron spectroscopy spectra. New features not present in the spectrum of the pristine me tal can be assigned as interface states having some degree of molecule-substrate hybridization. Here it is shown that interface states having molecular orbital character can easily be identified at low binding energy as isolated features above the featureless substrate sp-plateau. On the other hand much care must be taken in assigning adsorbate-induced features when these lie within the d-band spectral region of the substrate. In fact, features often interpreted as characteristic of the molecule-substrate interaction may actually arise from substrate photoelectrons scattered by the adsorbates. This phenomenon is illustrated through a series of examples of noble-metal single-crystal surfaces covered by monolayers of large pi-conjugated organic molecules.
The band alignment of semiconductor-metal interfaces plays a vital role in modern electronics, but remains difficult to predict theoretically and measure experimentally. For interfaces with strong band bending a main difficulty originates from the in -built potentials which lead to broadened and shifted band spectra in spectroscopy measurements. In this work we present a method to resolve the band alignment of buried semiconductor-metal interfaces using core level photoemission spectroscopy and self-consistent electronic structure simulations. As a proof of principle we apply the method to a clean in-situ grown InAs(100)/Al interface, a system with a strong in-built band bending. Due to the high signal-to-noise ratio of the core level spectra the proposed methodology can be used on previously inaccessible semiconductor-metal interfaces and support targeted design of novel hybrid devices and form the foundation for a interface parameter database for specified synthesis processes of semiconductor-metal systems.
The epitaxial growth of multifunctional oxides on semiconductors has opened a pathway to introduce new functionalities to semiconductor device technologies. In particular, ferroelectric materials integrated on semiconductors could lead to low-power f ield-effect devices that can be used for logic and memory. Essential to realizing such field-effect devices is the development of ferroelectric metal-oxide-semiconductor (MOS) capacitors, in which the polarization of a ferroelectric gate is coupled to the surface potential of a semiconducting channel. Here we demonstrate that ferroelectric MOS capacitors can be realized using single crystalline SrZrxTi1-xO3 (x = 0.7) that has been epitaxially grown on Ge. We find that the ferroelectric properties of SrZrxTi1-xO3 are exceptionally robust, as gate layers as thin as 5 nm corresponding to an equivalent-oxide-thickness of just 1.0 nm exhibit a ~ 2 V hysteretic window in the capacitance-voltage characteristics. The development of ferroelectric MOS capacitors with nanoscale gate thicknesses opens new vistas for nanoelectronic devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا