ترغب بنشر مسار تعليمي؟ اضغط هنا

Band bending profile and band offset extraction at semiconductor-metal interfaces

230   0   0.0 ( 0 )
 نشر من قبل Peter Krogstrup Professor
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The band alignment of semiconductor-metal interfaces plays a vital role in modern electronics, but remains difficult to predict theoretically and measure experimentally. For interfaces with strong band bending a main difficulty originates from the in-built potentials which lead to broadened and shifted band spectra in spectroscopy measurements. In this work we present a method to resolve the band alignment of buried semiconductor-metal interfaces using core level photoemission spectroscopy and self-consistent electronic structure simulations. As a proof of principle we apply the method to a clean in-situ grown InAs(100)/Al interface, a system with a strong in-built band bending. Due to the high signal-to-noise ratio of the core level spectra the proposed methodology can be used on previously inaccessible semiconductor-metal interfaces and support targeted design of novel hybrid devices and form the foundation for a interface parameter database for specified synthesis processes of semiconductor-metal systems.



قيم البحث

اقرأ أيضاً

Hybrid semiconductor-ferromagnetic insulator heterostructures are interesting due to their tunable electronic transport, self-sustained stray field and local proximitized magnetic exchange. In this work, we present lattice matched hybrid epitaxy of s emiconductor - ferromagnetic insulator InAs/EuS heterostructures and analyze the atomic-scale structure as well as their electronic and magnetic characteristics. The Fermi level at the InAs/EuS interface is found to be close to the InAs conduction band and in the bandgap of EuS, thus preserving the semiconducting properties. Both neutron and X-ray reflectivity measurements show that the ferromagnetic component is mainly localized in the EuS thin film with a suppression of the Eu moment in the EuS layer nearest the InAs. Induced moments in the adjacent InAs layers were not detected although our ab initio calculations indicate a small exchange field in the InAs layer. This work presents a step towards realizing high quality semiconductor - ferromagnetic insulator hybrids, which is a critical requirement for development of various quantum and spintronic applications without external magnetic fields.
Adsorption of organic molecules on well-oriented single crystal coinage metal surfaces fundamentally affects the energy distribution curve of ultra-violet photoelectron spectroscopy spectra. New features not present in the spectrum of the pristine me tal can be assigned as interface states having some degree of molecule-substrate hybridization. Here it is shown that interface states having molecular orbital character can easily be identified at low binding energy as isolated features above the featureless substrate sp-plateau. On the other hand much care must be taken in assigning adsorbate-induced features when these lie within the d-band spectral region of the substrate. In fact, features often interpreted as characteristic of the molecule-substrate interaction may actually arise from substrate photoelectrons scattered by the adsorbates. This phenomenon is illustrated through a series of examples of noble-metal single-crystal surfaces covered by monolayers of large pi-conjugated organic molecules.
Tunneling atomic force microscopy (TUNA) was used at ambient conditions to measure the current-voltage ($I$-$V$) characteristics at clean surfaces of highly oriented graphite samples with Bernal and rhombohedral stacking orders. The characteristic cu rves measured on Bernal-stacked graphite surfaces can be understood with an ordinary self-consistent semiconductor modeling and quantum mechanical tunneling current derivations. We show that the absence of a voltage region without measurable current in the $I$-$V$ spectra is not a proof of the lack of an energy band gap. It can be induced by a surface band bending due to a finite contact potential between tip and sample surface. Taking this into account in the model, we succeed to obtain a quantitative agreement between simulated and measured tunnel spectra for band gaps $(12 ldots 37)$,meV, in agreement to those extracted from the exponential temperature decrease of the longitudinal resistance measured in graphite samples with Bernal stacking order. In contrast, the surface of relatively thick graphite samples with rhombohedral stacking reveals the existence of a maximum in the first derivative $dI/dV$, a behavior compatible with the existence of a flat band. The characteristics of this maximum are comparable to those obtained at low temperatures with similar techniques.
We reanalyze some of the critical transport experiments and provide a coherent understanding of the current generation of topological insulators (TIs). Currently TI transport studies abound with widely varying claims of the surface and bulk states, o ften times contradicting each other, and a proper understanding of TI transport properties is lacking. According to the simple criteria given by Mott and Ioffe-Regel, even the best TIs are not true insulators in the Mott sense, and at best, are weakly-insulating bad metals. However, band-bending effects contribute significantly to the TI transport properties including Shubnikov de-Haas oscillations, and we show that utilization of this band-bending effect can lead to a Mott insulating bulk state in the thin regime. In addition, by reconsidering previous results on the weak anti-localization (WAL) effect with additional new data, we correct a misunderstanding in the literature and generate a coherent picture of the WAL effect in TIs.
307 - Javier Junquera 2002
We report first-principles density-functional pseudopotential calculations on the atomic structures, electronic properties, and band offsets of BaO/BaTiO$_3$ and SrO/SrTiO$_3$ nanosized heterojunctions grown on top of a silicon substrate. The density of states at the junction does not reveal any electronic induced interface states. A dominant perovskite character is found at the interface layer. The tunability of the band offset with the strain conditions imposed by the substrate is studied. Using previously reported theoretical data available for Si/SrO, Si/BaO and BaTiO$_{3}$/SrRuO$_{3}$ interfaces we extrapolate a value for the band alignments along the whole gate stacks of technological interest: Si/SrO/SrTiO$_3$ and Si/BaO/BaTiO$_3$/SrRuO$_3$ heterostructures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا