ترغب بنشر مسار تعليمي؟ اضغط هنا

Demonstration of a Chip-based Nonlinear Optical Isolator

185   0   0.0 ( 0 )
 نشر من قبل Jianming Wen
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Despite fundamentally challenging in integrated (nano)photonics, achieving chip-based light nonreciprocity becomes increasingly urgent in signal processing and optical communications. Because of material incompatibilities in conventional approaches based on Faraday effects, alternative solutions have resorted to nonlinear processes to obtain one-way transmission. However, revealed dynamic reciprocity in a recent theoretical analysis has pinned down the functionalities of these nonlinear isolators. To overcome this dynamic reciprocity, we here report the first demonstration of a nonlinear optical isolator on a silicon chip enforced by phase-matched parametric amplification. Using a high-Q microtoroid resonator, we realize highly nonreciprocal transport at the 1,550 nm wavelength when waves are simultaneously launched in both forward and backward directions. Our design, compatible with current CMOS technique, yields convincing isolation performance with sufficiently low insertion loss for a wide range of input power levels. Moreover, our work evidences the possibility of designing chip-based real nonlinear isolators for information processing and laser protection.

قيم البحث

اقرأ أيضاً

Realization of chip-scale nonreciprocal optics such as isolators and circulators is highly demanding for all-optical signal routing and protection with standard photonics foundry process. Owing to the significant challenge for incorporating magneto-o ptical materials on chip, the exploration of magnetic-free alternatives has become exceedingly imperative in integrated photonics. Here, we demonstrate a chip-based, tunable all-optical isolator at the telecommunication band based upon bulk stimulated Brillouin scattering (SBS) in a high-Q silica microtoroid resonator. This device exhibits remarkable characteristics over most state-of-the-art implements, including high isolation ratio, no insertion loss, and large working power range. Thanks to the guided acoustic wave and accompanying momentum-conservation condition, SBS also enables us to realize the first nonreciprocal parity-time symmetry in two directly-coupled microresonators. The breach of time-reversal symmetry further makes the design a versatile arena for developing many formidable ultra-compact devices such as unidirectional single-mode Brillouin lasers and supersensitive photonic sensors.
Integrated photonics has enabled signal synthesis, modulation and conversion using photonic integrated circuits (PIC). Many materials have been developed, among which silicon nitride (Si$_3$N$_4$) has emerged as a leading platform particularly for no nlinear photonics. Low-loss Si$_3$N$_4$ PIC has been widely used for frequency comb generation, narrow-linewidth lasers, microwave photonics, photonic computing networks, and even surface-electrode ion traps. Yet, among all demonstrated functionalities for Si$_3$N$_4$ integrated photonics, optical non-reciprocal devices, such as isolators and circulators, have not been achieved. Conventionally, they are realized based on Faraday effect of magneto-optic materials under external magnetic field. However, it has been challenging to integrate magneto-optic materials that are not CMOS-compatible and that require bulky external magnet. Here, we demonstrate a magnetic-free optical isolator based on aluminum nitride (AlN) piezoelectric modulators monolithically integrated on ultralow-loss Si$_3$N$_4$ PIC. The transmission reciprocity is broken by spatio-temporal modulation of a Si$_3$N$_4$ microring resonator with three AlN bulk acoustic wave resonators that are driven with a rotational phase. This design creates an effective rotating acoustic wave that allows indirect interband transition in only one direction among a pair of strongly coupled optical modes. Maximum of 10 dB isolation is achieved under 100 mW RF power applied to each actuator, with minimum insertion loss of 0.1 dB. The isolation remains constant over nearly 30 dB dynamic range of optical input power, showing excellent optical linearity. Our integrated, linear, magnetic-free, electrically driven optical isolator could become key building blocks for integrated lasers, chip-scale LiDAR engines, as well as optical interfaces for superconducting circuits.
The ability to generate complex optical photon states involving entanglement between multiple optical modes is not only critical to advancing our understanding of quantum mechanics but will play a key role in generating many applications in quantum t echnologies. These include quantum communications, computation, imaging, microscopy and many other novel technologies that are constantly being proposed. However, approaches to generating parallel multiple, customisable bi- and multi-entangled quantum bits (qubits) on a chip are still in the early stages of development. Here, we review recent developments in the realisation of integrated sources of photonic quantum states, focusing on approaches based on nonlinear optics that are compatible with contemporary optical fibre telecommunications and quantum memory infrastructures as well as with chip-scale semiconductor technology. These new and exciting platforms hold the promise of compact, low-cost, scalable and practical implementations of sources for the generation and manipulation of complex quantum optical states on a chip, which will play a major role in bringing quantum technologies out of the laboratory and into the real world.
An erbium doped micro-laser is demonstrated utilizing $mathrm{SiO_{2}}$ microdisk resonators on a silicon chip. Passive microdisk resonators exhibit whispering gallery type (WGM) modes with intrinsic optical quality factors of up to $6times{10^{7}}$ and were doped with trivalent erbium ions (peak concentration $mathrm{sim3.8times{10^{20}cm^{-3})}}$ using MeV ion implantation. Coupling to the fundamental WGM of the microdisk resonator was achieved by using a tapered optical fiber. Upon pumping of the $^{4}% I_{15/2}longrightarrow$ $^{4}I_{13/2}$ erbium transition at 1450 nm, a gradual transition from spontaneous to stimulated emission was observed in the 1550 nm band. Analysis of the pump-output power relation yielded a pump threshold of 43 $mathrm{mu}$W and allowed measuring the spontaneous emission coupling factor: $betaapprox1times10^{-3}$.
Here we report the first experimental demonstration of light trapping by a refractive index front in a silicon waveguide, the optical push broom effect. The front generated by a fast pump pulse collects and traps the energy of a CW signal with smalle r group velocity and tuned near to the band gap of the Bragg grating introduced in the waveguide. This situation represents an optical analogue of light trapping in a tapered plasmonic waveguide where light is stopped without reflection. The energy of the CW signal is accumulated inside the front and distributed in frequency. In this experiment a 2 ps free carrier front was generated via two photon absorption of the pump in silicon waveguide. It collects approximately a 30 ps long packet of the CW signal. The presented effect can be utilized to compress signals in time and space.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا