ﻻ يوجد ملخص باللغة العربية
Let R be a commutative ring. If P is a maximal ideal of R whose a power is finitely generated then we prove that P is finitely generated if R is either locally coherent or arithmetical or a polynomial ring over a ring of global dimension $le$ 2. And if P is a prime ideal of R whose a power is finitely generated then we show that P is finitely generated if R is either a reduced coherent ring or a polynomial ring over a reduced arithmetical ring. These results extend a theorem of Roitman, published in 2001, on prime ideals of coherent integral domains.
A definition of quasi-flat left module is proposed and it is shown that any left module which is either quasi-projective or flat is quasi-flat. A characterization of local commutative rings for which each ideal is quasi-flat (resp. quasi-projective)
In this paper we investigate finitely generated ideals in the Nevanlinna class. We prove analogues to some known results for the algebra of bounded analytic functions $H^{infty}$. We also show that, in contrast to the $H^{infty}$-case, the stable ran
We graph-theoretically characterize the class of graphs $G$ such that $I(G)^2$ are Buchsbaum.
Let A be a finite non-singleton set. For |A|=2 we show that the partial clone consisting of all selfdual monotone partial functions on A is not finitely generated, while it is the intersection of two finitely generated maximal partial clones on A. Mo
$N$-derivation is the natural generalization of derivation and triple derivation. Let ${cal L}$ be a finitely generated Lie algebra graded by a finite dimensional Cartan subalgebra. In this paper, a sufficient condition for Lie $N$-derivation algebra