ﻻ يوجد ملخص باللغة العربية
A plasma flow behind a relativistic electron bunch propagating through a cold plasma is found assuming that the transverse and longitudinal dimensions of the bunch are small and the bunch can be treated as a point charge. In addition, the bunch charge is assumed small. A simplified system of equations for the plasma electrons is derived and it is shown that, through a simple rescaling of variables, the bunch charge can be eliminated from the equations. These equations have a unique solution, with an ion cavity formed behind the driver. The equations are solved numerically and the scaling of the cavity dimensions with the driver charge is obtained. A numerical solution for the case of a positively charged driver is also found.
A linear theory of a wakefield excitation in a plasma-dielectric accelerating structure by a drive electron bunch in the case of an off-axis bunch injection has been constructed. The structure under investigation is a round dielectric-loaded metal wa
The AWAKE experiment relies on the self-modulation instability of a long proton bunch to effectively drive wakefields and accelerate an electron bunch to GeV-level energies. During the first experimental run (2016-2018) the instability was made phase
We give direct experimental evidence for the observation of the full transverse self-modulation of a relativistic proton bunch propagating through a dense plasma. The bunch exits the plasma with a density modulation resulting from radial wakefield ef
The paper presents the results of numerical PIC-simulation of positron bunch focusing when acceleration in a plasma dielectric wakefield accelerator. The wakefield was excited by drive electron bunch in quartz dielectric tube, embedded in cylindrical
A higher harmonic cavity (HHC), used to cause bunch lengthening for an increase in the Touschek lifetime, is a feature of several fourth generation synchrotron light sources. The desired bunch lengthening is complicated by the presence of required ga