ترغب بنشر مسار تعليمي؟ اضغط هنا

Acceleration and focusing of positron bunch in a dielectric waveguide accelerator with homogeneous plasma in transport channel

86   0   0.0 ( 0 )
 نشر من قبل Gennadij Sotnikov
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The paper presents the results of numerical PIC-simulation of positron bunch focusing when acceleration in a plasma dielectric wakefield accelerator. The wakefield was excited by drive electron bunch in quartz dielectric tube, embedded in cylindrical metal waveguide. The internal area of dielectric tube has been filled with radially homogeneous plasma having in general case the vacuum channel along waveguide axis. Results of numerical PIC simulation have shown that it is possible a simultaneous acceleration and focusing of test positron bunch in the wakefield. The dependence of transport and acceleration of positron bunch on size of vacuum channel and waveguide length is studied.



قيم البحث

اقرأ أيضاً

A linear theory of a wakefield excitation in a plasma-dielectric accelerating structure by a drive electron bunch in the case of an off-axis bunch injection has been constructed. The structure under investigation is a round dielectric-loaded metal wa veguide with a channel for the charged particles, filled with homogeneous cold plasma. Derived theory was used to investigate numerically the spatial distribution of the bunch-excited wakefield components, which act on both the drive and witness bunches.
Hollow channel plasma wakefield acceleration is a proposed method to provide high acceleration gradients for electrons and positrons alike: a key to future lepton colliders. However, beams which are misaligned from the channel axis induce strong tran sverse wakefields, deflecting beams and reducing the collider luminosity. This undesirable consequence sets a tight constraint on the alignment accuracy of the beam propagating through the channel. Direct measurements of beam misalignment-induced transverse wakefields are therefore essential for designing mitigation strategies. We present the first quantitative measurements of transverse wakefields in a hollow plasma channel, induced by an off-axis 20 GeV positron bunch, and measured with another 20 GeV lower charge trailing positron probe bunch. The measurements are largely consistent with theory.
79 - Y. P. Wu , J. F. Hua , C. H. Pai 2018
Plasma-based electron and positron wakefield acceleration has made great strides in the past decade. However one major challenge for its applications to coherent light sources and colliders is the relatively large energy spread of the accelerated bea ms, currently at a few percent level. This energy spread is usually correlated with particle position in the beam arising from the longitudinal chirp of the wakefield amplitude. Therefore a dechirper is highly desirable for reducing this spread down to $sim0.1%$ level, while at the same time for maintaining the emittance of the accelerated beam. Here we propose that a low-density hollow channel plasma can act as a near-ideal dechirper for both electrons and positrons. We demonstrate the concept through large-scale three-dimensional particle-in-cell simulations. We show that the initial positive correlated energy spread (chirp) on the beam exiting a plasma accelerator can be compensated by the nearly linear self-wake induced by the beam in the hollow channel from few percent level down to $leq 0.1%$. Meanwhile, the beam emittance can be preserved due to the negligible transverse field inside the channel. This passive method may significantly improve the beam quality of plasma-based accelerators, paving the way for their applications to future compact free electron lasers and colliders.
We present methods and preliminary observations of two pulse Direct Laser Acceleration in a Laser-Driven Plasma Accelerator. This acceleration mechanism uses a second co-propagating laser pulse to overlap and further accelerate electrons in a wakefie ld bubble, increasing energy at the cost of emittance when compared to traditional laser wakefield acceleration (LWFA). To this end, we introduce a method of femtosecond scale control of time delay between two co-propagating pulses. We show energy enhancement when the separation between the two pulses approaches the bubble radius.
78 - J.S.T. Ng , P. Chen , W. Craddock 2000
We present results from the SLAC E-150 experiment on plasma focusing of high energy density electron and, for the first time, positron beams. We also discuss measurements on plasma lens-induced synchrotron radiation, longitudinal dynamics of plasma focusing, and laser- and beam-plasma interactions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا