ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin-Wave and Electromagnon Dispersions in Multiferroic MnWO4 as Observed by Neutron Spectroscopy: Isotropic Heisenberg Exchange versus Anisotropic Dzyaloshinskii-Moriya Interaction

66   0   0.0 ( 0 )
 نشر من قبل Yinguo Xiao
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

High resolution inelastic neutron scattering reveals that the elementary magnetic excitations in multiferroic MnWO4 consist of low energy dispersive electromagnons in addition to the well-known spin-wave excitations. The latter can well be modeled by a Heisenberg Hamiltonian with magnetic exchange coupling extending to the 12th nearest neighbor. They exhibit a spin-wave gap of 0.61(1) meV. Two electromagnon branches appear at lower energies of 0.07(1) meV and 0.45(1) meV at the zone center. They reflect the dynamic magnetoelectric coupling and persist in both, the collinear magnetic and paraelectric AF1 phase, and the spin spiral ferroelectric AF2 phase. These excitations are associated with the Dzyaloshinskii-Moriya exchange interaction, which is significant due to the rather large spin-orbit coupling.



قيم البحث

اقرأ أيضاً

110 - Tobias Bottcher 2020
We present results of the analysis of Brillouin Light Scattering (BLS) measurements of spin waves performed on ultrathin single and multirepeat CoFeB layers with adjacent heavy metal layers. From a detailed study of the spin-wave dispersion relation, we independently extract the Heisenberg exchange interaction (also referred to as symmetric exchange interaction), the Dzyaloshinskii-Moriya interaction (DMI, also referred to as antisymmetric exchange interaction), and the anisotropy field. We find a large DMI in CoFeB thin films adjacent to a Pt layer and nearly vanishing DMI for CoFeB films adjacent to a W layer. Furthermore, the residual influence of the dipolar interaction on the dispersion relation and on the evaluation of the Heisenberg exchange parameter is demonstrated. In addition, an experimental analysis of the DMI on the spin-wave lifetime is presented. All these parameters play a crucial role in designing skyrmionic or spin-orbitronic devices.
In this work, we address the ground state properties of the anisotropic spin-1/2 Heisenberg XYZ chain under the interplay of magnetic fields and the Dzyaloshinskii-Moriya (DM) interaction which we interpret as an electric field. The identification of the regions of enhanced sensitivity determines criticality in this model. We calculate the Wigner-Yanase skew information (WYSI) as a coherence witness of an arbitrary two-qubit state under specific measurement bases. The WYSI is demonstrated to be a good indicator for detecting the quantum phase transitions. The finite-size scaling of coherence susceptibility is investigated. We find that the factorization line in the antiferromagnetic phase becomes the factorization volume in the gapless chiral phase induced by DM interactions, implied by the vanishing concurrence for a wide range of field. We also present the phase diagram of the model with three phases: antiferromagnetic, paramagnetic, and chiral, and point out a few common mistakes in deriving the correlation functions for the systems with broken reflection symmetry.
Chiral antiferromagnets are currently considered for broad range of applications in spintronics, spin-orbitronics and magnonics. In contrast to the established approach relying on materials screening, the anisotropic and chiral responses of low-dimen sional antifferromagnets can be tailored relying on the geometrical curvature. Here, we consider an achiral, anisotropic antiferromagnetic spin chain and demonstrate that these systems possess geometry-driven effects stemming not only from the exchange interaction but also from the anisotropy. Peculiarly, the anisotropy-driven effects are complementary to the curvature effects stemming from the exchange interaction and rather strong as they are linear in curvature. These effects are responsible for the tilt of the equilibrium direction of vector order parameters and the appearance of the homogeneous Dzyaloshinskii-Moriya interaction. The latter is a source of the geometry-driven weak ferromagnetism emerging in curvilinear antiferromagnetic spin chains. Our findings provide a deeper fundamental insight into the physics of curvilinear antiferromagnets beyond the $sigma$-model and offer an additional degree of freedom in the design of spintronic and magnonic devices.
We study the magnetic properties of the two-dimensional anisotropic antiferromagnetic spin-1/2 Heisenberg model with Dzyaloshinskii-Moriya interaction and in-plane frustration included. The method of spin Green functions within the framework of Tyabl ikovs random-phase-approximation decoupling scheme is used in order to derive expressions for the spin-wave spectrum, sublattice magnetization and transition temperature. Based on these expressions we perform a detailed analysis of the influence of varying values of model parameters on its magnetic properties. The model is also applied to the high-Tc superconducting parent compound La2Cuo4 and our results compared to available experimental data.
106 - Bin Xi , Shijie Hu , Qiang Luo 2016
We study the thermodynamics of an XYZ Heisenberg chain with Dzyaloshinskii-Moriya interaction, which describes the low-energy behaviors of a one-dimensional spin-orbit-coupled bosonic model in the deep insulating region. The entropy and the specific heat are calculated numerically by the quasi-exact transfer-matrix renormalization group. In particular, in the limit $U^prime/Urightarrowinfty$, our model is exactly solvable and thus serves as a benchmark for our numerical method. From our data, we find that for $U^prime/U>1$ a quantum phase transition between an (anti)ferromagnetic phase and a Tomonaga-Luttinger liquid phase occurs at a finite $theta$, while for $U^prime/U<1$ a transition between a ferromagnetic phase and a paramagnetic phase happens at $theta=0$. A refined ground-state phase diagram is then deduced from their low-temperature behaviors. Our findings provide an alternative way to detect those distinguishable phases experimentally.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا