ﻻ يوجد ملخص باللغة العربية
We study the magnetic properties of the two-dimensional anisotropic antiferromagnetic spin-1/2 Heisenberg model with Dzyaloshinskii-Moriya interaction and in-plane frustration included. The method of spin Green functions within the framework of Tyablikovs random-phase-approximation decoupling scheme is used in order to derive expressions for the spin-wave spectrum, sublattice magnetization and transition temperature. Based on these expressions we perform a detailed analysis of the influence of varying values of model parameters on its magnetic properties. The model is also applied to the high-Tc superconducting parent compound La2Cuo4 and our results compared to available experimental data.
We study the thermodynamics of an XYZ Heisenberg chain with Dzyaloshinskii-Moriya interaction, which describes the low-energy behaviors of a one-dimensional spin-orbit-coupled bosonic model in the deep insulating region. The entropy and the specific
A preponderance of evidence suggests that the ground state of the nearest-neighbor $S = 1/2$ antiferromagnetic Heisenberg model on the kagome lattice is a gapless spin liquid. Many candidate materials for the realization of this model possess in addi
We have theoretically studied the spin structure factors of Heisenberg model on honeycomb lattice in the presence of longitudinal magnetic field, i.e. magnetic field perpendicular to the honeycomb plane, and Dzyaloshinskii-Moriya interaction. The pos
The electron spin resonance spectrum of a quasi 1D S=1/2 antiferromagnet K2CuSO4Br2 was found to demonstrate an energy gap and a doublet of resonance lines in a wide temperature range between the Curie--Weiss and Ne`{e}l temperatures. This type of ma
The quantum spin liquid material herbertsmithite is described by an antiferromagnetic Heisenberg model on the kagome lattice with non-negligible Dzyaloshinskii-Moriya interaction~(DMI). A well established phase transition to the $mathbf q=0$ long-ran