ترغب بنشر مسار تعليمي؟ اضغط هنا

Curvature-driven homogeneous Dzyaloshinskii-Moriya interaction and emergent weak ferromagnetism in anisotropic antiferromagnetic spin chains

87   0   0.0 ( 0 )
 نشر من قبل Oleksandr Pylypovskyi
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Chiral antiferromagnets are currently considered for broad range of applications in spintronics, spin-orbitronics and magnonics. In contrast to the established approach relying on materials screening, the anisotropic and chiral responses of low-dimensional antifferromagnets can be tailored relying on the geometrical curvature. Here, we consider an achiral, anisotropic antiferromagnetic spin chain and demonstrate that these systems possess geometry-driven effects stemming not only from the exchange interaction but also from the anisotropy. Peculiarly, the anisotropy-driven effects are complementary to the curvature effects stemming from the exchange interaction and rather strong as they are linear in curvature. These effects are responsible for the tilt of the equilibrium direction of vector order parameters and the appearance of the homogeneous Dzyaloshinskii-Moriya interaction. The latter is a source of the geometry-driven weak ferromagnetism emerging in curvilinear antiferromagnetic spin chains. Our findings provide a deeper fundamental insight into the physics of curvilinear antiferromagnets beyond the $sigma$-model and offer an additional degree of freedom in the design of spintronic and magnonic devices.

قيم البحث

اقرأ أيضاً

We explore remanent magnetization ($mu$) as a function of time and temperature, in a variety of rhombohedral antiferromagnets (AFM) which are also weak ferromagnets (WFM) and piezomagnets (PzM). These measurements, across samples with length scales r anging from nano to bulk, firmly establish the presence of a remanence that is quasi static in nature and exhibits a counter-intuitive magnetic field dependence. These observations unravel an ultra-slow magnetization relaxation phenomenon related to this quasi static remanence. This feature is also observed in a defect free single crystal of $alpha$-Fe$_2$O$_3$, which is a canonical WFM and PzM. Notably, $alpha$-Fe$_2$O$_3$ is not a typical geometrically frustrated AFM and in single crystal form, it is also devoid of any size or interface effects, which are the usual suspects for a slow magnetization relaxation phenomenon. The underlying pinning mechanism appears exclusive to those AFM which are either symmetry allowed WFM, driven by Dzyaloshinskii-Moriya Interaction (DMI) or can generate this trait by tuning of size and interface. The qualitative features of the quasi static remanence indicate that such WFM are potential piezomagnets, in which magnetization can be tuned by textit{stress} alone.
We present a general approach for studying the dynamics of domain walls in biaxial ferromagnetic stripes with functionally graded Dzyaloshinskii-Moriya interaction (DMI). By engineering the spatial profile of the DMI parameter we propose the concept of a diode, which implements filtering of domain walls of certain topological charge and helicity. We base our study on phenomenological Landau-Lifshitz-Gilbert equations with additional Zhang-Li spin-transfer terms using a collective variable approach. In the effective equations of motion the gradients of DMI play the role of a driving force which competes with current driving. All analytical predictions are confirmed by numerical simulations.
We report on electron spin resonance (ESR) studies of the spin relaxation in Cs$_2$CuCl$_4$. The main source of the ESR linewidth at temperatures $T leq 150$ K is attributed to the uniform Dzyaloshinskii-Moriya interaction. The vector components of t he Dzyaloshinskii-Moriya interaction are determined from the angular dependence of the ESR spectra using a high-temperature approximation. Both the angular and temperature dependence of the ESR linewidth have been analyzed using a self-consistent quantum-mechanical approach. In addition analytical expressions based on a quasi-classical picture for spin fluctuations are derived, which show good agreement with the quantum-approach for temperatures $T geq 2J/k_{rm B} approx 15$ K. A small modulation of the ESR linewidth observed in the $ac$-plane is attributed to the anisotropic Zeeman interaction, which reflects the two magnetically nonequivalent Cu positions.
142 - B. Y. Pan , H. C. Xu , Y. Liu 2020
CrAs is a well-known helimagnet with the double-helix structure originating from the competition between the Dzyaloshinskii-Moriya interaction (DMI) and antiferromagnetic exchange interaction $J$. By resonant soft X-ray scattering (RSXS), we observe the magnetic peak (0~0~$q_m$) that emerges at the helical transition with $T_S$ $approx$ 267.5 K. Intriguingly, the helimagnetic domains significantly shrink on cooling below $sim$255 K, opposite to the conventional thermal effect. The weakening of DMI on cooling is found to play a critical role here. It causes the helical wave vector to vary, ordered spins to rotate, and extra helimagnetic domain boundaries to form at local defects, thus leading to the anomalous shrinkage of helimagnetic domains. Our results indicate that the size of magnetic helical domains can be controlled by tuning DMI in certain helimagnets.
The interface between a ferromagnet (FM) or antiferromagnet (AFM) and a heavy metal (HM) results in an antisymmetric exchange interaction known as the interfacial Dzyaloshinskii-Moriya interaction (iDMI) which favors non-collinear spin configurations . The iDMI is responsible for stabilizing noncollinear spin textures such as skyrmions in materials with bulk inversion symmetry. Interfacial DMI values have been previously determined theoretically and experimentally for FM/HM interfaces, and, in this work, values are calculated for the metallic AFM MnPt and the insulating AFM NiO. The heavy metals considered are W, Re, and Au. The effects of the AFM and HM thicknesses are determined. The iDMI values of the MnPt heterolayers are comparable to those of the common FM materials, and those of NiO are lower.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا