ترغب بنشر مسار تعليمي؟ اضغط هنا

Wave propagation in spatially modulated tubes

181   0   0.0 ( 0 )
 نشر من قبل Alexander Ziepke
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate wave propagation in rotationally symmetric tubes with a periodic spatial modulation of cross section. Using an asymptotic perturbation analysis, the governing quasi two-dimensional reaction-diffusion equation can be reduced into a one-dimensional reaction-diffusion-advection equation. Assuming a weak perturbation by the advection term and using projection method, in a second step, an equation of motion for traveling waves within such tubes can be derived. Both methods predict properly the nonlinear dependence of the propagation velocity on the ratio of the modulation period of the geometry to the intrinsic width of the front, or pulse. As a main feature, we can observe finite intervals of propagation failure of waves induced by the tubes modulation. In addition, using the Fick-Jacobs approach for the highly diffusive limit we show that wave velocities within tubes are governed by an effective diffusion coefficient. Furthermore, we discuss the effects of a single bottleneck on the period of pulse trains within tubes. We observe period changes by integer fractions dependent on the bottleneck width and the period of the entering pulse train.



قيم البحث

اقرأ أيضاً

113 - Yu-Qin Yao , Ji Li , Wei Han 2016
The intrinsic nonlinearity is the most remarkable characteristic of the Bose-Einstein condensates (BECs) systems. Many studies have been done on atomic BECs with time- and space- modulated nonlinearities, while there is few work considering the atomi c-molecular BECs with space-modulated nonlinearities. Here, we obtain two kinds of Jacobi elliptic solutions and a family of rational solutions of the atomic-molecular BECs with trapping potential and space-modulated nonlinearity and consider the effect of three-body interaction on the localized matter wave solutions. The topological properties of the localized nonlinear matter wave for no coupling are analysed: the parity of nonlinear matter wave functions depends only on the principal quantum number $n$, and the numbers of the density packets for each quantum state depend on both the principal quantum number $n$ and the secondary quantum number $l$. When the coupling is not zero,the localized nonlinear matter waves given by the rational function, their topological properties are independent of the principal quantum number $n$, only depend on the secondary quantum number $l$. The Raman detuning and the chemical potential can change the number and the shape of the density packets. The stability of the Jacobi elliptic solutions depends on the principal quantum number $n$, while the stability of the rational solutions depends on the chemical potential and Raman detuning.
We consider propagation of high-frequency wave packets along a smooth evolving background flow whose evolution is described by a simple-wave type of solutions of hydrodynamic equations. In geometrical optics approximation, the motion of the wave pack et obeys the Hamilton equations with the dispersion law playing the role of the Hamiltonian. This Hamiltonian depends also on the amplitude of the background flow obeying the Hopf-like equation for the simple wave. The combined system of Hamilton and Hopf equations can be reduced to a single ordinary differential equation whose solution determines the value of the background amplitude at the location of the wave packet. This approach extends the results obtained in Ref.~cite{ceh-19} for the rarefaction background flow to arbitrary simple-wave type background flows. The theory is illustrated by its application to waves obeying the KdV equation.
Linear and nonlinear mechanisms for conical wave propagation in two-dimensional lattices are explored in the realm of phononic crystals. As a prototypical example, a statically compressed granular lattice of spherical particles arranged in a hexagona l packing configuration is analyzed. Upon identifying the dispersion relation of the underlying linear problem, the resulting diffraction properties are considered. Analysis both via a heuristic argument for the linear propagation of a wavepacket, as well as via asymptotic analysis leading to the derivation of a Dirac system suggests the occurrence of conical diffraction. This analysis is valid for strong precompression i.e., near the linear regime. For weak precompression, conical wave propagation is still possible, but the resulting expanding circular wave front is of a non-oscillatory nature, resulting from the complex interplay between the discreteness, nonlinearity and geometry of the packing. The transition between these two types of propagation is explored.
The iteration sequence based on the BLUES (Beyond Linear Use of Equation Superposition) function method for calculating analytic approximants to solutions of nonlinear ordinary differential equations with sources is elaborated upon. Diverse problems in physics are studied and approximate analytic solutions are found. We first treat a damped driven nonlinear oscillator and show that the method can correctly reproduce oscillatory behaviour. Next, a fractional differential equation describing heat transfer in a semi-infinite rod with Stefan-Boltzmann cooling is handled. In this case, a detailed comparison is made with the Adomian decomposition method, the outcome of which is favourable for the BLUES method. As a final problem, the Fisher equation from population biology is dealt with. For all cases, it is shown that the solutions converge exponentially fast to the numerically exact solution, either globally or, for the Fisher problem, locally.
I consider the problem of self-oscillatory systems undergoing a homogeneous Hopf bifurcation when they are submitted to an external forcing that is periodic in time, at a frequency close to the systems natural frequency (1:1 resonance), and whose amp litude is slowly modulated in space. Starting from a general, unspecified model and making use of standard multiple scales analysis, I show that the close-to-threshold dynamics of such systems is universally governed by a generalized, complex Ginzburg-Landau (CGL) equation. The nature of the generalization depends on the strength and of other features of forcing: (i) For generic, sufficiently weak forcings the CGL equation contains an extra, inhomogeneous term proportional to the complex amplitude of forcing, as in the usual 1:1 resonance with spatially uniform forcing; (ii) For stronger perturbations, whose amplitude sign alternates across the system, the CGL equation contains a term proportional to the complex conjugate of the oscillations envelope, like in the classical 2:1 resonance, responsible for the emergence of phase bistability and of phase bistable patterns in the system. Finally I show that case (ii) is retrieved from case (i) in the appropriate limit so that the latter can be regarded as the generic model for the close-to-threshold dynamics of the type of systems considered here. The kind of forcing studied in this work thus represents an alternative to the classical parametric forcing at twice the natural frequency of oscillations and opens the way to new forms of pattern formation control in self-oscillatory systems, what is especially relevant in the case of systems that are quite insensitive to parametric forcing, such as lasers and other nonlinear optical cavities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا