ترغب بنشر مسار تعليمي؟ اضغط هنا

BLUES iteration applied to nonlinear ordinary differential equations for wave propagation and heat transfer

139   0   0.0 ( 0 )
 نشر من قبل Jonas Berx
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The iteration sequence based on the BLUES (Beyond Linear Use of Equation Superposition) function method for calculating analytic approximants to solutions of nonlinear ordinary differential equations with sources is elaborated upon. Diverse problems in physics are studied and approximate analytic solutions are found. We first treat a damped driven nonlinear oscillator and show that the method can correctly reproduce oscillatory behaviour. Next, a fractional differential equation describing heat transfer in a semi-infinite rod with Stefan-Boltzmann cooling is handled. In this case, a detailed comparison is made with the Adomian decomposition method, the outcome of which is favourable for the BLUES method. As a final problem, the Fisher equation from population biology is dealt with. For all cases, it is shown that the solutions converge exponentially fast to the numerically exact solution, either globally or, for the Fisher problem, locally.

قيم البحث

اقرأ أيضاً

An iteration sequence based on the BLUES (beyond linear use of equation superposition) function method is presented for calculating analytic approximants to solutions of nonlinear partial differential equations. This extends previous work using this method for nonlinear ordinary differential equations with an external source term. Now, the initial condition plays the role of the source. The method is tested on three examples: a reaction-diffusion-convection equation, the porous medium equation with growth or decay, and the nonlinear Black-Scholes equation. A comparison is made with three other methods: the Adomian decomposition method (ADM), the variational iteration method (VIM), and the variational iteration method with Green function (GVIM). As a physical application, a deterministic differential equation is proposed for interface growth under shear, combining Burgers and Kardar- Parisi-Zhang nonlinearities. Thermal noise is neglected. This model is studied with Gaussian and space-periodic initial conditions. A detailed Fourier analysis is performed and the analytic coefficients are compared with those of ADM, VIM, GVIM, and standard perturbation theory. The BLUES method turns out to be a worthwhile alternative to the other methods. The advantages that it offers ensue from the freedom of choosing judiciously the linear part, with associated Green function, and the residual containing the nonlinear part of the differential operator at hand.
We propose a simple algebraic method for generating classes of traveling wave solutions for a variety of partial differential equations of current interest in nonlinear science. This procedure applies equally well to equations which may or may not be integrable. We illustrate the method with two distinct classes of models, one with solutions including compactons in a class of models inspired by the Rosenau-Hyman, Rosenau-Pikovsky and Rosenau-Hyman-Staley equations, and the other with solutions including peakons in a system which generalizes the Camassa-Holm, Degasperis-Procesi and Dullin-Gotwald-Holm equations. In both cases, we obtain new classes of solutions not studied before.
260 - Guo-cheng Wu 2010
Recently, fractional differential equations have been investigated via the famous variational iteration method. However, all the previous works avoid the term of fractional derivative and handle them as a restricted variation. In order to overcome su ch shortcomings, a fractional variational iteration method is proposed. The Lagrange multipliers can be identified explicitly based on fractional variational theory.
Taking the example of Koretweg--de Vries equation, it is shown that soliton solutions need not always be the consequence of the trade-off between the nonlinear terms and the dispersive term in the nonlinear differential equation. Even the ordinary on e dimensional linear partial differential equation can produce a soliton.
Model reduction for fluid flow simulation continues to be of great interest across a number of scientific and engineering fields. Here, we explore the use of Neural Ordinary Differential Equations, a recently introduced family of continuous-depth, di fferentiable networks (Chen et al 2018), as a way to propagate latent-space dynamics in reduced order models. We compare their behavior with two classical non-intrusive methods based on proper orthogonal decomposition and radial basis function interpolation as well as dynamic mode decomposition. The test problems we consider include incompressible flow around a cylinder as well as real-world applications of shallow water hydrodynamics in riverine and estuarine systems. Our findings indicate that Neural ODEs provide an elegant framework for stable and accurate evolution of latent-space dynamics with a promising potential of extrapolatory predictions. However, in order to facilitate their widespread adoption for large-scale systems, significant effort needs to be directed at accelerating their training times. This will enable a more comprehensive exploration of the hyperparameter space for building generalizable Neural ODE approximations over a wide range of system dynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا