ﻻ يوجد ملخص باللغة العربية
Linear and nonlinear mechanisms for conical wave propagation in two-dimensional lattices are explored in the realm of phononic crystals. As a prototypical example, a statically compressed granular lattice of spherical particles arranged in a hexagonal packing configuration is analyzed. Upon identifying the dispersion relation of the underlying linear problem, the resulting diffraction properties are considered. Analysis both via a heuristic argument for the linear propagation of a wavepacket, as well as via asymptotic analysis leading to the derivation of a Dirac system suggests the occurrence of conical diffraction. This analysis is valid for strong precompression i.e., near the linear regime. For weak precompression, conical wave propagation is still possible, but the resulting expanding circular wave front is of a non-oscillatory nature, resulting from the complex interplay between the discreteness, nonlinearity and geometry of the packing. The transition between these two types of propagation is explored.
We study wave propagation in two-dimensional granular crystals under the Hertzian contact law consisting of hexagonal packings of spheres under various basin geometries including hexagonal, triangular, and circular basins which can be tiled with hexa
We conduct an extensive study of nonlinear localized modes (NLMs), which are temporally periodic and spatially localized structures, in a two-dimensional array of repelling magnets. In our experiments, we arrange a lattice in a hexagonal configuratio
We describe the dynamic response of a two-dimensional hexagonal packing of uncompressed stainless steel spheres excited by localized impulsive loadings. After the initial impact strikes the system, a characteristic wave structure emerges and continuo
We investigate the singularities of the trace of the half-wave group, $mathrm{Tr} , e^{-itsqrtDelta}$, on Euclidean surfaces with conical singularities $(X,g)$. We compute the leading-order singularity associated to periodic orbits with successive de
We study solitary wave propagation in 1D granular crystals with Hertz-like interaction potentials. We consider interfaces between media with different exponents in the interaction potential. For an interface with increasing interaction potential expo