ﻻ يوجد ملخص باللغة العربية
Comets provide a unique insight into the molecular composition and complexity of the material in the primordial solar nebula. Recent results from the Rosetta mission, currently monitoring comet 67P/Churyumov-Gerasimenko in situ, and ALMA (the Atacama Large Millimeter/submillimeter Array), have demonstrated a tantalising link between the chemical complexity now confirmed in disks (via the detection of gas-phase CH3CN; Oberg et al. 2015) and that confirmed on the surface of 67P (Goesmann et al. 2015), raising questions concerning the chemical origin of such species (cloud or inheritance versus disk synthesis). Results from an astrochemical model of a protoplanetary disk are presented in which complex chemistry is included and in which it is assumed that simple ices only are inherited from the parent molecular cloud. The model results show good agreement with the abundances of several COMs observed on the surface of 67P with Philae/COSAC. Cosmic-ray and X-ray-induced photoprocessing of predominantly simple ices inherited by the protoplanetary disk is sufficient to generate a chemical complexity similar to that observed in comets. This indicates that the icy COMs detected on the surface of 67P may have a disk origin. The results also show that gas-phase CH3CN is abundant in the inner warm disk atmosphere where hot gas-phase chemistry dominates and potentially erases the ice chemical signature. Hence, CH3CN may not be an unambiguous tracer of the complex organic ice reservoir. However, a better understanding of the hot gas-phase chemistry of CH3CN is needed to confirm this preliminary conclusion.
The $sigma$ Orionis cluster is important for studying protoplanetary disk evolution, as its intermediate age ($sim$3-5 Myr) is comparable to the median disk lifetime. We use ALMA to conduct a high-sensitivity survey of dust and gas in 92 protoplaneta
We present new Atacama Large Millimeter/submillimeter Array (ALMA) observations for three protoplanetary disks in Taurus at 2.9,mm and comparisons with previous 1.3,mm data both at an angular resolution of $sim0.1$ (15,au for the distance of Taurus).
Aims: To trace the radial and vertical spatial distribution of H2CS, a key species of the S-bearing chemistry, in protoplanetary disks. To analyse the observed distributions in light of the H2CS binding energy, in order to discuss the role of thermal
We study details of the UV radiation transfer in a protoplanetary disk, paying attention to the influence of dust growth and sedimentation on the disk density and temperature. Also, we show how the dust evolution affects photoreaction rates of key molecules, like CN and CS.
It has been recently suggested that the multiple concentric rings and gaps discovered by ALMA in many protoplanetary disks may be produced by a single planet, as a result of the complex propagation and dissipation of the multiple spiral density waves