ترغب بنشر مسار تعليمي؟ اضغط هنا

UV-controlled physical and chemical structure of protoplanetary disks

78   0   0.0 ( 0 )
 نشر من قبل Vitaly Akimkin
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study details of the UV radiation transfer in a protoplanetary disk, paying attention to the influence of dust growth and sedimentation on the disk density and temperature. Also, we show how the dust evolution affects photoreaction rates of key molecules, like CN and CS.

قيم البحث

اقرأ أيضاً

56 - I. Kamp 2019
VLT instruments and ALMA have revolutionized in the past five years our view and understanding of how disks turn into planetary systems. They provide exquisite insights into non-axisymmetric structures likely closely related to ongoing planet formati on processes. The following cannot be a complete review of the physical and chemical properties of disks; instead I focus on a few selected aspects. I will review our current understanding of the physical properties (e.g. solid and gas mass content, snow and ice lines) and chemical composition of planet forming disks at ages of 1-few Myr, especially in the context of the planetary systems that are forming inside them. I will highlight recent advances achieved by means of consistent multi-wavelength studies of gas AND dust in protoplanetary disks.
Ultraviolet spectra of protoplanetary disks trace distributions of warm gas at radii where rocky planets form. We combine HST-COS observations of H2 and CO emission from 12 classical T Tauri stars to more extensively map inner disk surface layers, wh ere gas temperature distributions allow radially stratified fluorescence from the two species. We calculate empirical emitting radii for each species under the assumption that the line widths are entirely set by Keplerian broadening, demonstrating that the CO fluorescence originates further from the stars (r ~ 20 AU) than the H2 (r ~ 0.8 AU). This is supported by 2-D radiative transfer models, which show that the peak and outer radii of the CO flux distributions generally extend further into the outer disk than the H2. These results also indicate that additional sources of LyA photons remain unaccounted for, requiring more complex models to fully reproduce the molecular gas emission. As a first step, we confirm that the morphologies of the UV-CO bands and LyA radiation fields are significantly correlated and discover that both trace the degree of dust disk evolution. The UV tracers appear to follow the same sequence of disk evolution as forbidden line emission from jets and winds, as the observed LyA profiles transition between dominant red wing and dominant blue wing shapes when the high-velocity optical emission disappears. Our results suggest a scenario where UV radiation fields, disk winds and jets, and molecular gas evolve in harmony with the dust disks throughout their lifetimes.
91 - Shoji Mori , 2019
The gas temperature in protoplanetary disks (PPDs) is determined by a combination of irradiation heating and accretion heating, with the latter conventionally attributed to turbulent dissipation. However, recent studies have suggested that the inner disk (a few AU) is largely laminar, with accretion primarily driven by magnetized disk winds, as a result of nonideal magnetohydrodynamic (MHD) effects from weakly ionized gas, suggesting an alternative heating mechanism by Joule dissipation. We perform local stratified MHD simulations including all three nonideal MHD effects (ohmic, Hall, and ambipolar diffusion) and investigate the role of Joule heating and the resulting disk vertical temperature profiles. We find that in the inner disk, as ohmic and ambipolar diffusion strongly suppress electrical current around the midplane, Joule heating primarily occurs at several scale heights above the midplane, making the midplane temperature much lower than that with the conventional viscous heating model. Including the Hall effect, Joule heating is enhanced/reduced when the magnetic fields threading the disks are aligned/anti-aligned with the disk rotation, but it is overall ineffective. Our results further suggest that the midplane temperature in the inner PPDs is almost entirely determined by irradiation heating, unless viscous heating can trigger thermal ionization in the disk innermost region to self-sustain magnetorotational instability turbulence.
216 - Catherine Walsh 2016
Comets provide a unique insight into the molecular composition and complexity of the material in the primordial solar nebula. Recent results from the Rosetta mission, currently monitoring comet 67P/Churyumov-Gerasimenko in situ, and ALMA (the Atacama Large Millimeter/submillimeter Array), have demonstrated a tantalising link between the chemical complexity now confirmed in disks (via the detection of gas-phase CH3CN; Oberg et al. 2015) and that confirmed on the surface of 67P (Goesmann et al. 2015), raising questions concerning the chemical origin of such species (cloud or inheritance versus disk synthesis). Results from an astrochemical model of a protoplanetary disk are presented in which complex chemistry is included and in which it is assumed that simple ices only are inherited from the parent molecular cloud. The model results show good agreement with the abundances of several COMs observed on the surface of 67P with Philae/COSAC. Cosmic-ray and X-ray-induced photoprocessing of predominantly simple ices inherited by the protoplanetary disk is sufficient to generate a chemical complexity similar to that observed in comets. This indicates that the icy COMs detected on the surface of 67P may have a disk origin. The results also show that gas-phase CH3CN is abundant in the inner warm disk atmosphere where hot gas-phase chemistry dominates and potentially erases the ice chemical signature. Hence, CH3CN may not be an unambiguous tracer of the complex organic ice reservoir. However, a better understanding of the hot gas-phase chemistry of CH3CN is needed to confirm this preliminary conclusion.
81 - A.I. Vasyunin 2010
We study the impact of dust evolution in a protoplanetary disk around a T Tauri star on the disk chemical composition. For the first time we utilize a comprehensive model of dust evolution which includes growth, fragmentation and sedimentation. Speci fic attention is paid to the influence of grain evolution on the penetration of the UV field in the disk. A chemical model that includes a comprehensive set of gas phase and grain surface chemical reactions is used to simulate the chemical structure of the disk. The main effect of the grain evolution on the disk chemical composition comes from sedimentation, and, to a lesser degree, from the reduction of the total grain surface area. The net effect of grain growth is suppressed by the fragmentation process which maintains a population of small grains, dominating the total grain surface area. We consider three models of dust properties. In model GS both growth and sedimentation are taken into account. In models A5 and A4 all grains are assumed to have the same size (10(-5) cm and 10(-4) cm, respectively) with constant gas-to-dust mass ratio of 100. Like in previous studies, the three-layer pattern (midplane, molecular layer, hot atmosphere) in the disk chemical structure is preserved in all models, but shifted closer to the midplane in models with increased grain size (GS and A4). Unlike other similar studies, we find that in models GS and A4 column densities of most gas-phase species are enhanced by 1-3 orders of magnitude relative to those in a model with pristine dust (A5), while column densities of their surface counterparts are decreased. We show that column densities of certain species, like C2H, HC(2n+1)N (n=0-3), H2O and some other molecules, as well as the C2H2/HCN abundance ratio which are accessible with Herschel and ALMA can be used as observational tracers of early stages of the grain evolution process in protoplanetary disks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا