ترغب بنشر مسار تعليمي؟ اضغط هنا

ALMA chemical survey of disk-outflow sources in Taurus (ALMA-DOT). IV. Thioformaldehyde (H$_2$CS) in protoplanetary disks: spatial distributions and binding energies

139   0   0.0 ( 0 )
 نشر من قبل Claudio Codella
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Aims: To trace the radial and vertical spatial distribution of H2CS, a key species of the S-bearing chemistry, in protoplanetary disks. To analyse the observed distributions in light of the H2CS binding energy, in order to discuss the role of thermal desorption in enriching the gas disk component. Methods: In the context of the ALMA chemical survey of Disk-Outflow sources in the Taurus star forming region (ALMA-DOT), we observed five Class I or early Class II sources with the o-H2CS(7_1,6-6_1,5) line on a 40 au scale. We estimated the binding energy (BEs) of H2CS using quantum mechanical calculations, for the first time, for an extended, periodic, crystalline ice. Results: We imaged H2CS in two rotating molecular rings in the HL Tau and IRAS04302+2247 disks. The outer radii are about 140 au (HL Tau), and 115 au (IRAS 04302+2247). The edge-on geometry of IRAS 04302+2247 reveals that H2CS emission peaks, at radii of 60-115 au, at z = +- 50 au from the equatorial plane. The column densities are about 10^14 cm^-2. For HL Tau, we derive, for the first time, the [H2CS]/[H] abundance in a protoplanetary disk (about 10^-14). The BEs of H2CS computed for extended crystalline ice and amorphous ices is 4258 K and 3000-4600 K, respectively, implying a thermal evaporation where dust temperature is larger than 50-80 K. Conclusions: H2CS traces the so-called warm molecular layer, a region previously sampled using CS, and H2CO. Thioformaldehyde peaks closer to the protostar than H2CO and CS, plausibly due to the relatively high-excitation level of observed 7_1,6-6_1,5 line (60 K). The H2CS BEs implies that thermal desorption dominates in thin, au-sized, inner and/or upper disk layers, indicating that the observed H2CS emitting up to radii larger than 100 au is likely injected in the gas due to non-thermal processes.

قيم البحث

اقرأ أيضاً

We present an overview of the ALMA chemical survey of disk-outflow sources in Taurus (ALMA-DOT), a campaign devoted to the characterization of the molecular emission from partly embedded, young stars. The project aims at better understanding the gase ous products that are delivered to planets by means of high-resolution maps of assorted lines probing disks at the time of the planet formation (less than 1 Myr). Nine different molecules are surveyed by our observations of six Class I/flat-spectrum sources. A series of accompanying articles analyze specific targets and molecules. Here we describe the sample and provide a general overview of the results, focusing on the spatial distribution, column densities, and abundance ratios of H$_2$CO, CS, and CN. The results of this work are a first step toward the characterization of the disk chemical evolution that need to be complemented by further observations of less exceptional disks and customized thermo-chemical modeling.
104 - L. Podio , A. Garufi , C. Codella 2020
Planets form in protoplanetary disks and inherit their chemical composition. It is therefore crucial to understand the disks molecular content. We aim to characterize the distribution and abundance of molecules in the disk of DG Tau. In the context o f the ALMA chemical survey of Disk-Outflow sources in Taurus (ALMA-DOT) we analyse ALMA observations of the disk of DG Tau in H2CO 3(1,2)-2(1,1), CS 5-4, and CN 2-1 at ~0.15, i.e. ~18 au at 121 pc. H2CO and CS originate from a disk ring at the edge of the 1.3mm dust continuum, with CS probing an outer disk region with respect to H2CO (peaking at ~70 and ~60 au, respectively). CN originates from an outermost disk/envelope region peaking at ~80 au. H2CO is dominated by disk emission, while CS probes also two streams of material possibly accreting onto the disk with a peak of emission where the stream connects to the disk. The ring- and disk-height- averaged column densities are ~2.4-8.6e13 cm-2 (H2CO), ~1.7-2.5e13 cm-2 (CS), and ~1.9-4.7e13 cm-2 (CN). Unsharp masking reveals a ring of enhanced dust emission at ~40 au, i.e. just outside the CO snowline (~30 au). CS and H2CO emissions are co-spatial suggesting that they are chemically linked. The observed rings of molecular emission at the edge of the 1.3mm continuum may be due to dust opacity effects and/or continnum over-subtraction in the inner disk; as well as to increased UV penetration and/or temperature inversion at the edge of the mm-dust which would cause an enhanced gas-phase formation and desorption of these molecules. Moreover, H2CO and CS originate from outside the ring of enhanced dust emission, which also coincides with a change of the linear polarization at 0.87mm. This suggests that outside the CO snowline there could be a change of the dust properties which would reflect in the increase of the intensity (and change of polarization) of continuum, and of molecular emission.
99 - L. Podio , A. Garufi , C. Codella 2020
The chemical composition of planets is inherited from that of the protoplanetary disk at the time of planet formation. Increasing observational evidence suggests that planet formation occurs in less than 1 Myr. This motivates the need for spatially r esolved spectral observations of Class I disks, as carried out by the ALMA chemical survey of Disk-Outflow sources in Taurus (ALMA-DOT). In the context of ALMA-DOT, we observe the edge-on disk around the Class I source IRAS 04302+2247 (the butterfly star) in the 1.3mm continuum and five molecular lines. We report the first tentative detection of methanol (CH$_3$OH) in a Class I disk and resolve, for the first time, the vertical structure of a disk with multiple molecular tracers. The bulk of the emission in the CO 2-1, CS 5-4, and o-H$_2$CO 3(1,2)-2(1,1) lines originates from the warm molecular layer, with the line intensity peaking at increasing disk heights, $z$, for increasing radial distances, $r$. Molecular emission is vertically stratified, with CO observed at larger disk heights (aperture $z/rsim0.41-0.45$) compared to both CS and H$_2$CO, which are nearly cospatial ($z/rsim0.21-0.28$). In the outer midplane, the line emission decreases due to molecular freeze-out onto dust grains (freeze-out layer) by a factor of >100 (CO) and 15 (CS). The H$_2$CO emission decreases by a factor of only about 2, which is possibly due to H$_2$CO formation on icy grains, followed by a nonthermal release into the gas phase. The inferred [CH$_3$OH]/[H$_2$CO] abundance ratio is 0.5-0.6, which is 1-2 orders of magnitude lower than for Class 0 hot corinos, and a factor ~2.5 lower than the only other value inferred for a protoplanetary disk (in TW Hya, 1.3-1.7). Additionally, it is at the lower edge but still consistent with the values in comets. This may indicate that some chemical reprocessing occurs in disks before the formation of planets and comets.
The $sigma$ Orionis cluster is important for studying protoplanetary disk evolution, as its intermediate age ($sim$3-5 Myr) is comparable to the median disk lifetime. We use ALMA to conduct a high-sensitivity survey of dust and gas in 92 protoplaneta ry disks around $sigma$ Orionis members with $M_{ast}gtrsim0.1 M_{odot}$. Our observations cover the 1.33 mm continuum and several CO $J=2-1$ lines: out of 92 sources, we detect 37 in the mm continuum and six in $^{12}$CO, three in $^{13}$CO, and none in C$^{18}$O. Using the continuum emission to estimate dust mass, we find only 11 disks with $M_{rm dust}gtrsim10 M_{oplus}$, indicating that after only a few Myr of evolution most disks lack sufficient dust to form giant planet cores. Stacking the individually undetected continuum sources limits their average dust mass to 5$times$ lower than that of the faintest detected disk, supporting theoretical models that indicate rapid dissipation once disk clearing begins. Comparing the protoplanetary disk population in $sigma$ Orionis to those of other star-forming regions supports the steady decline in average dust mass and the steepening of the $M_{rm dust}$-$M_{ast}$ relation with age; studying these evolutionary trends can inform the relative importance of different disk processes during key eras of planet formation. External photoevaporation from the central O9 star is influencing disk evolution throughout the region: dust masses clearly decline with decreasing separation from the photoionizing source, and the handful of CO detections exist at projected separations $>1.5$ pc. Collectively, our findings indicate that giant planet formation is inherently rare and/or well underway by a few Myr of age.
We present new Atacama Large Millimeter/submillimeter Array (ALMA) observations for three protoplanetary disks in Taurus at 2.9,mm and comparisons with previous 1.3,mm data both at an angular resolution of $sim0.1$ (15,au for the distance of Taurus). In the single-ring disk DS Tau, double-ring disk GO Tau, and multiple-ring disk DL Tau, the same rings are detected at both wavelengths, with radial locations spanning from 50 to 120,au. To quantify the dust emission morphology, the observed visibilities are modeled with a parametric prescription for the radial intensity profile. The disk outer radii, taken as 95% of the total flux encircled in the model intensity profiles, are consistent at both wavelengths for the three disks. Dust evolution models show that dust trapping in local pressure maxima in the outer disk could explain the observed patterns. Dust rings are mostly unresolved. The marginally resolved ring in DS Tau shows a tentatively narrower ring at the longer wavelength, an observational feature expected from efficient dust trapping. The spectral index ($alpha_{rm mm}$) increases outward and exhibits local minima that correspond to the peaks of dust rings, indicative of the changes in grain properties across the disks. The low optical depths ($tausim$0.1--0.2 at 2.9,mm and 0.2--0.4 at 1.3,mm) in the dust rings suggest that grains in the rings may have grown to millimeter sizes. The ubiquitous dust rings in protoplanetary disks modify the overall dynamics and evolution of dust grains, likely paving the way towards the new generation of planet formation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا