ترغب بنشر مسار تعليمي؟ اضغط هنا

Effect of Ge-substitution on Magnetic Properties in the Itinerant Chiral Magnet MnSi

124   0   0.0 ( 0 )
 نشر من قبل Seno Aji
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have investigated the effect of Ge-substitution to the magnetic ordering in the B20 itinerant chiral magnet MnSi prepared by melting and annealing under ambient pressure. From metallurgical survey, the solubility limit of Ge was found to be $x=0.144(5)$ with annealing temperature $T_mathrm{an} = 1073$ K. Magnetization measurements on MnSi$_{1-x}$Ge$_x$ samples show that the helical ordering temperature $T_{mathrm{c}}$ increases rapidly in the low-$x$ range, whereas it becomes saturated at higher concentration $x>~0.1$. The Ge substitution also increases both the saturation magnetization $M_mathrm{s}$ and the critical field to the fully polarized state $H_mathrm{c2}$. In contrast to the saturation behavior of $T_mathrm{c}$, those parameters increase linearly up to the highest Ge concentration investigated. In the temperature-magnetic field phase diagram, we found enlargement of the skyrmion phase region for large $x$ samples. We, furthermore, observed the non-linear behavior of helical modulation vector $k$ as a function of Ge concentration, which can be described qualitatively using the mean field approximation.



قيم البحث

اقرأ أيضاً

The evolution of the magnetic and charge transport properties of itinerant magnetic metal MnSi with the substitution of Al and Ga on the Si site is investigated. We observe an increase in unit cell volume indicating that both Al and Ga substitutions create negative chemical pressure. There are substantial increases in the Curie temperature and the ordered moment demonstrating that the substitutions give the magnetism a more local character. The substitutions also increase the range of temperature and field where the skyrmion phase is stable due to a change in the character of the magnetism. In contrast to the behavior of pure MnSi and expectations for the intrinsic anomalous Hall effect, we find a significant temperature dependence to the magnitude and sign of anomalous Hall conductivity constant in Al or Ga substituted samples. This temperature dependence likely reflects changes in the spin-orbit coupling strength with temperature, which may have significant consequences on the helical and skyrmion states. Overall, we observe a continuous evolution of magnetic and charge transport properties through positive to negative pressure
104 - A. Hamann , D. Lamago , Th. Wolf 2011
Chiral nematic liquid crystals sometimes form blue phases characterized by spirals twisting in different directions. By combining model calculations with neutron-scattering experiments, we show that the magnetic analogue of blue phases does form in t he chiral itinerant magnet MnSi in a large part of the phase diagram. The properties of this blue phase explain a number of previously reported puzzling features of MnSi such as partial magnetic order and a two-component specific-heat and thermal-expansion anomaly at the magnetic transition.
324 - Junho Seo , Eun Su An , Taesu Park 2020
Antiferromagnetic (AFM) van der Waals (vdW) materials provide a novel platform for synthetic AFM spintronics, in which the spin-related functionalities are derived from manipulating spin configurations between the layers. Metallic vdW antiferromagnet s are expected to have several advantages over the widely-studied insulating counterparts in switching and detecting the spin states through electrical currents but have been much less explored due to the lack of suitable materials. Here, utilizing the extreme sensitivity of the vdW interlayer magnetism to material composition, we report the itinerant antiferromagnetism in Co-doped Fe4GeTe2 with TN ~ 210 K, an order of magnitude increased as compared to other known AFM vdW metals. The resulting spin configurations and orientations are sensitively controlled by doping, magnetic field, temperature, and thickness, which are effectively read out by electrical conduction. These findings manifest strong merits of metallic vdW magnets with tunable interlayer exchange interaction and magnetic anisotropy, suitable for AFM spintronic applications.
131 - N. Jiang , Y. Nii , R. Ishii 2017
We have investigated anomalous Hall effect and magnetoresistance in a noncentrosymmetric itinerant magnet Cr$_{11}$Ge$_{19}$. While the temperature- and magnetic-field-dependent anomalous Hall conductivity is just proportional to the magnetization ab ove 30 K, it is more enhanced in the lower temperature region. The magnitude of negative magnetoresistance begins to increase toward low temperature around 30 K. The anisotropic magnetoresistance emerges at similar temperature. Because there is no anomaly in the temperature dependence of magnetization around 30 K, the origin of these observations in transport properties is ascribed to some electronic structure with the energy scale of 30 K. We speculate this is caused by the spin splitting due to breaking of spatial inversion symmetry.
FeGe in the B20 phase is an experimentally well-studied prototypical chiral magnet exhibiting helical spirals, skyrmion lattices and individual skyrmions with a robust length of 70~nm. While the helical spiral ground state can be verified by first-pr inciples calculations based on density functional theory, this feature size could not be reproduced even approximately. To develop a coherent picture of the discrepancy between experiment and theory, we investigate in this work the magnetic properties of FeGe from first-principles using different electronic-structure methods. We study atomistic as well as micromagnetic parameters describing exchange and Dzyaloshinskii-Moriya interactions, and discuss their subtle dependence on computational, structural, and correlation parameters. In particular, we quantify how these magnetic properties are affected by changes of the lattice parameter, different atomic arrangements, exchange and correlation effects, finite Fermi-function broadening, and momentum-space sampling. In addition, we use the obtained atomistic parameters to determine the corresponding Curie temperature, which agrees well with experiments. Our results indicate that the well-known and well-accepted relation between the micromagnetic parameters and the period of the helical structure, is not valid for FeGe. This calls for new experiments exploring the relation by measuring independently the spin stiffness, the spiralization and the period of the helical spin spiral.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا