ﻻ يوجد ملخص باللغة العربية
Motivated by the physics of strings and branes, we introduce a general suite of Markov chain Monte Carlo (MCMC) suburban samplers (i.e., spread out Metropolis). The suburban algorithm involves an ensemble of statistical agents connected together by a random network. Performance of the collective in reaching a fast and accurate inference depends primarily on the average number of nearest neighbor connections. Increasing the average number of neighbors above zero initially leads to an increase in performance, though there is a critical connectivity with effective dimension d_eff ~ 1, above which groupthink takes over, and the performance of the sampler declines.
Motivated by the physics of strings and branes, we develop a class of Markov chain Monte Carlo (MCMC) algorithms involving extended objects. Starting from a collection of parallel Metropolis-Hastings (MH) samplers, we place them on an auxiliary grid,
Markov chain Monte Carlo algorithms are used to simulate from complex statistical distributions by way of a local exploration of these distributions. This local feature avoids heavy requests on understanding the nature of the target, but it also pote
Rao-Blackwellization is a notion often occurring in the MCMC literature, with possibly different meanings and connections with the original Rao--Blackwell theorem (Rao, 1945 and Blackwell,1947), including a reduction of the variance of the resulting
Monte Carlo methods are the standard procedure for estimating complicated integrals of multidimensional Bayesian posterior distributions. In this work, we focus on LAIS, a class of adaptive importance samplers where Markov chain Monte Carlo (MCMC) al
Monte Carlo (MC) methods are widely used for Bayesian inference and optimization in statistics, signal processing and machine learning. A well-known class of MC methods are Markov Chain Monte Carlo (MCMC) algorithms. In order to foster better explora