ترغب بنشر مسار تعليمي؟ اضغط هنا

MCMC-driven importance samplers

183   0   0.0 ( 0 )
 نشر من قبل Fernando Llorente Fern\\'andez
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Monte Carlo methods are the standard procedure for estimating complicated integrals of multidimensional Bayesian posterior distributions. In this work, we focus on LAIS, a class of adaptive importance samplers where Markov chain Monte Carlo (MCMC) algorithms are employed to drive an underlying multiple importance sampling (IS) scheme. Its power lies in the simplicity of the layered framework: the upper layer locates proposal densities by means of MCMC algorithms; while the lower layer handles the multiple IS scheme, in order to compute the final estimators. The modular nature of LAIS allows for different possible choices in the upper and lower layers, that will have different performance and computational costs. In this work, we propose different enhancements in order to increase the efficiency and reduce the computational cost, of both upper and lower layers. The different variants are essential if we aim to address computational challenges arising in real-world applications, such as highly concentrated posterior distributions (due to large amounts of data, etc.). Hamiltonian-driven importance samplers are presented and tested. Furthermore, we introduce different strategies for designing cheaper schemes, for instance, recycling samples generated in the upper layer and using them in the final estimators in the lower layer. Numerical experiments show the benefits of the proposed schemes as compared to the vanilla version of LAIS and other benchmark methods.



قيم البحث

اقرأ أيضاً

Bayesian methods and their implementations by means of sophisticated Monte Carlo techniques have become very popular in signal processing over the last years. Importance Sampling (IS) is a well-known Monte Carlo technique that approximates integrals involving a posterior distribution by means of weighted samples. In this work, we study the assignation of a single weighted sample which compresses the information contained in a population of weighted samples. Part of the theory that we present as Group Importance Sampling (GIS) has been employed implicitly in different works in the literature. The provided analysis yields several theoretical and practical consequences. For instance, we discuss the application of GIS into the Sequential Importance Resampling framework and show that Independent Multiple Try Metropolis schemes can be interpreted as a standard Metropolis-Hastings algorithm, following the GIS approach. We also introduce two novel Markov Chain Monte Carlo (MCMC) techniques based on GIS. The first one, named Group Metropolis Sampling method, produces a Markov chain of sets of weighted samples. All these sets are then employed for obtaining a unique global estimator. The second one is the Distributed Particle Metropolis-Hastings technique, where different parallel particle filters are jointly used to drive an MCMC algorithm. Different resampled trajectories are compared and then tested with a proper acceptance probability. The novel schemes are tested in different numerical experiments such as learning the hyperparameters of Gaussian Processes, two localization problems in a wireless sensor network (with synthetic and real data) and the tracking of vegetation parameters given satellite observations, where they are compared with several benchmark Monte Carlo techniques. Three illustrative Matlab demos are also provided.
Modeling binary and categorical data is one of the most commonly encountered tasks of applied statisticians and econometricians. While Bayesian methods in this context have been available for decades now, they often require a high level of familiarit y with Bayesian statistics or suffer from issues such as low sampling efficiency. To contribute to the accessibility of Bayesian models for binary and categorical data, we introduce novel latent variable representations based on Polya Gamma random variables for a range of commonly encountered discrete choice models. From these latent variable representations, new Gibbs sampling algorithms for binary, binomial and multinomial logistic regression models are derived. All models allow for a conditionally Gaussian likelihood representation, rendering extensions to more complex modeling frameworks such as state space models straight-forward. However, sampling efficiency may still be an issue in these data augmentation based estimation frameworks. To counteract this, MCMC boosting strategies are developed and discussed in detail. The merits of our approach are illustrated through extensive simulations and a real data application.
It is well known that Markov chain Monte Carlo (MCMC) methods scale poorly with dataset size. A popular class of methods for solving this issue is stochastic gradient MCMC. These methods use a noisy estimate of the gradient of the log posterior, whic h reduces the per iteration computational cost of the algorithm. Despite this, there are a number of results suggesting that stochastic gradient Langevin dynamics (SGLD), probably the most popular of these methods, still has computational cost proportional to the dataset size. We suggest an alternative log posterior gradient estimate for stochastic gradient MCMC, which uses control variates to reduce the variance. We analyse SGLD using this gradient estimate, and show that, under log-concavity assumptions on the target distribution, the computational cost required for a given level of accuracy is independent of the dataset size. Next we show that a different control variate technique, known as zero variance control variates can be applied to SGMCMC algorithms for free. This post-processing step improves the inference of the algorithm by reducing the variance of the MCMC output. Zero variance control variates rely on the gradient of the log posterior; we explore how the variance reduction is affected by replacing this with the noisy gradient estimate calculated by SGMCMC.
Markov chain Monte Carlo (MCMC) methods are widely used in machine learning. One of the major problems with MCMC is the question of how to design chains that mix fast over the whole state space; in particular, how to select the parameters of an MCMC algorithm. Here we take a different approach and, similarly to parallel MCMC methods, instead of trying to find a single chain that samples from the whole distribution, we combine samples from several chains run in parallel, each exploring only parts of the state space (e.g., a few modes only). The chains are prioritized based on kernel Stein discrepancy, which provides a good measure of performance locally. The samples from the independent chains are combined using a novel technique for estimating the probability of different regions of the sample space. Experimental results demonstrate that the proposed algorithm may provide significant speedups in different sampling problems. Most importantly, when combined with the state-of-the-art NUTS algorithm as the base MCMC sampler, our method remained competitive with NUTS on sampling from unimodal distributions, while significantly outperforming state-of-the-art competitors on synthetic multimodal problems as well as on a challenging sensor localization task.
223 - L. Martino , V. Elvira , D. Luengo 2015
Monte Carlo methods represent the de facto standard for approximating complicated integrals involving multidimensional target distributions. In order to generate random realizations from the target distribution, Monte Carlo techniques use simpler pro posal probability densities to draw candidate samples. The performance of any such method is strictly related to the specification of the proposal distribution, such that unfortunate choices easily wreak havoc on the resulting estimators. In this work, we introduce a layered (i.e., hierarchical) procedure to generate samples employed within a Monte Carlo scheme. This approach ensures that an appropriate equivalent proposal density is always obtained automatically (thus eliminating the risk of a catastrophic performance), although at the expense of a moderate increase in the complexity. Furthermore, we provide a general unified importance sampling (IS) framework, where multiple proposal densities are employed and several IS schemes are introduced by applying the so-called deterministic mixture approach. Finally, given these schemes, we also propose a novel class of adaptive importance samplers using a population of proposals, where the adaptation is driven by independent parallel or interacting Markov Chain Monte Carlo (MCMC) chains. The resulting algorithms efficiently combine the benefits of both IS and MCMC methods.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا