ﻻ يوجد ملخص باللغة العربية
Motivated by the physics of strings and branes, we develop a class of Markov chain Monte Carlo (MCMC) algorithms involving extended objects. Starting from a collection of parallel Metropolis-Hastings (MH) samplers, we place them on an auxiliary grid, and couple them together via nearest neighbor interactions. This leads to a class of suburban samplers (i.e., spread out Metropolis). Coupling the samplers in this way modifies the mixing rate and speed of convergence for the Markov chain, and can in many cases allow a sampler to more easily overcome free energy barriers in a target distribution. We test these general theoretical considerations by performing several numerical experiments. For suburban samplers with a fluctuating grid topology, performance is strongly correlated with the average number of neighbors. Increasing the average number of neighbors above zero initially leads to an increase in performance, though there is a critical connectivity with effective dimension d_eff ~ 1, above which groupthink takes over, and the performance of the sampler declines.
Motivated by the physics of strings and branes, we introduce a general suite of Markov chain Monte Carlo (MCMC) suburban samplers (i.e., spread out Metropolis). The suburban algorithm involves an ensemble of statistical agents connected together by a
We present several methods, which utilize symplectic integration techniques based on two and three part operator splitting, for numerically solving the equations of motion of the disordered, discrete nonlinear Schrodinger (DDNLS) equation, and compar
We map the parameter space that leads to stable Z-vortices in the electroweak model. For $sin^2 theta_W = 0.23$, we find that the strings are unstable for a Higgs mass larger than 24 GeV. Given the latest constraints on the Higgs mass from LEP, this
With Monte Carlo methods, we investigate the universality class of the depinning transition in the two-dimensional Ising model with quenched random fields. Based on the short-time dynamic approach, we accurately determine the depinning transition fie
We extend Shens recent formulation (arXiv:1806.07388) of the classical double copy, based on explicit color-kinematic duality, to the case of finite-size sources with non-zero spin. For the case of spinning Yang-Mills sources, the most general consis