ترغب بنشر مسار تعليمي؟ اضغط هنا

Resolved Magnetic-Field Structure and Variability Near the Event Horizon of Sagittarius A*

172   0   0.0 ( 0 )
 نشر من قبل Michael Johnson
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Near a black hole, differential rotation of a magnetized accretion disk is thought to produce an instability that amplifies weak magnetic fields, driving accretion and outflow. These magnetic fields would naturally give rise to the observed synchrotron emission in galaxy cores and to the formation of relativistic jets, but no observations to date have been able to resolve the expected horizon-scale magnetic-field structure. We report interferometric observations at 1.3-millimeter wavelength that spatially resolve the linearly polarized emission from the Galactic Center supermassive black hole, Sagittarius A*. We have found evidence for partially ordered fields near the event horizon, on scales of ~6 Schwarzschild radii, and we have detected and localized the intra-hour variability associated with these fields.

قيم البحث

اقرأ أيضاً

Event Horizon Telescope (EHT) observations at 230 GHz have now imaged polarized emission around the supermassive black hole in M87 on event-horizon scales. This polarized synchrotron radiation probes the structure of magnetic fields and the plasma pr operties near the black hole. Here we compare the resolved polarization structure observed by the EHT, along with simultaneous unresolved observations with the Atacama Large Millimeter/submillimeter Array, to expectations from theoretical models. The low fractional linear polarization in the resolved image suggests that the polarization is scrambled on scales smaller than the EHT beam, which we attribute to Faraday rotation internal to the emission region. We estimate the average density n_e of order 10^4-7 cm-3, magnetic field strength B of order 1-30 G, and electron temperature Te of order (1-12) x 10^10 K of the radiating plasma in a simple one-zone emission model. We show that the net azimuthal linear polarization pattern may result from organized, poloidal magnetic fields in the emission region. In a quantitative comparison with a large library of simulated polarimetric images from general relativistic magnetohydrodynamic (GRMHD) simulations, we identify a subset of physical models that can explain critical features of the polarimetric EHT observations while producing a relativistic jet of sufficient power. The consistent GRMHD models are all of magnetically arrested accretion disks, where near-horizon magnetic fields are dynamically important. We use the models to infer a mass accretion rate onto the black hole in M87 of (3-20) x 10^-4 Msun yr-1.
The Galactic Center black hole Sagittarius A* (Sgr A*) is a prime observing target for the Event Horizon Telescope (EHT), which can resolve the 1.3 mm emission from this source on angular scales comparable to that of the general relativistic shadow. Previous EHT observations have used visibility amplitudes to infer the morphology of the millimeter-wavelength emission. Potentially much richer source information is contained in the phases. We report on 1.3 mm phase information on Sgr A* obtained with the EHT on a total of 13 observing nights over 4 years. Closure phases, the sum of visibility phases along a closed triangle of interferometer baselines, are used because they are robust against phase corruptions introduced by instrumentation and the rapidly variable atmosphere. The median closure phase on a triangle including telescopes in California, Hawaii, and Arizona is nonzero. This result conclusively demonstrates that the millimeter emission is asymmetric on scales of a few Schwarzschild radii and can be used to break 180-degree rotational ambiguities inherent from amplitude data alone. The stability of the sign of the closure phase over most observing nights indicates persistent asymmetry in the image of Sgr A* that is not obscured by refraction due to interstellar electrons along the line of sight.
Black hole event horizons, causally separating the external universe from compact regions of spacetime, are one of the most exotic predictions of General Relativity (GR). Until recently, their compact size has prevented efforts to study them directly . Here we show that recent millimeter and infrared observations of Sagittarius A* (Sgr A*), the supermassive black hole at the center of the Milky Way, all but requires the existence of a horizon. Specifically, we show that these observations limit the luminosity of any putative visible compact emitting region to below 0.4% of Sgr A*s accretion luminosity. Equivalently, this requires the efficiency of converting the gravitational binding energy liberated during accretion into radiation and kinetic outflows to be greater than 99.6%, considerably larger than those implicated in Sgr A*, and therefore inconsistent with the existence of such a visible region. Finally, since we are able to frame this argument entirely in terms of observable quantities, our results apply to all geometric theories of gravity that admit stationary solutions, including the commonly discussed f(R) class of theories.
In April 2019, the Event Horizon Telescope (EHT) collaboration revealed the first image of the candidate super-massive black hole (SMBH) at the centre of the giant elliptical galaxy Messier 87 (M87). This event-horizon-scale image shows a ring of glo wing plasma with a dark patch at the centre, which is interpreted as the shadow of the black hole. This breakthrough result, which represents a powerful confirmation of Einsteins theory of gravity, or general relativity, was made possible by assembling a global network of radio telescopes operating at millimetre wavelengths that for the first time included the Atacama Large Millimeter/ submillimeter Array (ALMA). The addition of ALMA as an anchor station has enabled a giant leap forward by increasing the sensitivity limits of the EHT by an order of magnitude, effectively turning it into an imaging array. The published image demonstrates that it is now possible to directly study the event horizon shadows of SMBHs via electromagnetic radiation, thereby transforming this elusive frontier from a mathematical concept into an astrophysical reality. The expansion of the array over the next few years will include new stations on different continents - and eventually satellites in space. This will provide progressively sharper and higher-fidelity images of SMBH candidates, and potentially even movies of the hot plasma orbiting around SMBHs. These improvements will shed light on the processes of black hole accretion and jet formation on event-horizon scales, thereby enabling more precise tests of general relativity in the truly strong field regime.
General relativistic magnetohydrodynamic (GRMHD) simulations of accretion disks and jets associated with supermassive black holes show variability on a wide range of timescales. On timescales comparable to or longer than the gravitational timescale $ t_G=GM/c^3$, variation may be dominated by orbital dynamics of the inhomogeneous accretion flow. Turbulent evolution within the accretion disk is expected on timescales comparable to the orbital period, typically an order of magnitude larger than $t_G$. For Sgr A*, $t_G$ is much shorter than the typical duration of a VLBI experiment, enabling us to study this variability within a single observation. Closure phases, the sum of interferometric visibility phases on a triangle of baselines, are particularly useful for studying this variability. In addition to a changing source structure, variations in observed closure phase can also be due to interstellar scattering, thermal noise, and the changing geometry of projected baselines over time due to Earth rotation. We present a metric that is able to distinguish the latter two from intrinsic or scattering variability. This metric is validated using synthetic observations of GRMHD simulations of Sgr A*. When applied to existing multi-epoch EHT data of Sgr A*, this metric shows that the data are most consistent with source models containing intrinsic variability from source dynamics, interstellar scattering, or a combination of those. The effects of black hole inclination, orientation, spin, and morphology (disk or jet) on the expected closure phase variability are also discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا