ﻻ يوجد ملخص باللغة العربية
CVSO 30 is a unique young low-mass system, because, for the first time, a close-in transiting and a wide directly imaged planet candidates are found around a common host star. The inner companion, CVSO 30 b, is the first possible young transiting planet orbiting a previously known weak-lined T-Tauri star. With five telescopes of the Young Exoplanet Transit Initiative (YETI) located in Asia, Europe and South America we monitored CVSO 30 over three years in a total of 144 nights and detected 33 fading events. In two more seasons we carried out follow-up observations with three telescopes. We can confirm that there is a change in the shape of the fading event between different observations and that the fading event even disappears and reappears. A total of 38 fading event light curves were simultaneously modelled. We derived the planetary, stellar, and geometrical properties of the system and found them slightly smaller but in agreement with the values from the discovery paper. The period of the fading event was found to be 1.36 s shorter and 100 times more precise than the previous published value. If CVSO 30 b would be a giant planet on a precessing orbit, which we cannot confirm, yet, the precession period may be shorter than previously thought. But if confirmed as a planet it would be the youngest transiting planet ever detected and will provide important constraints on planet formation and migration time-scales.
We surveyed the 25 Ori association for direct-imaging companions. This association has an age of only few million years. Among other targets, we observed CVSO 30, which has recently been identified as the first T Tauri star found to host a transiting
Context: We present the transit and follow-up of a single transit event from Campaign 14 of K2, EPIC248847494b, which has a duration of 54 hours and a 0.18% depth. Aims: Using photometric tools and conducting radial velocity follow-up, we vet and cha
Astronomers have discovered thousands of planets outside the solar system, most of which orbit stars that will eventually evolve into red giants and then into white dwarfs. During the red giant phase, any close-orbiting planets will be engulfed by th
We present the confirmation of the eccentric warm giant planet TOI-201 b, first identified as a candidate in textit{TESS} photometry (Sectors 1-8, 10-13, and 27-28) and confirmed using ground-based photometry from NGTS and radial velocities from FERO
We present the Young Exoplanet Transit Initiative (YETI), in which we use several 0.2 to 2.6m telescopes around the world to monitor continuously young (< 100 Myr), nearby (< 1 kpc) stellar clusters mainly to detect young transiting planets (and to s