ﻻ يوجد ملخص باللغة العربية
In this work the accuracy of the Actuator Line Model (ALM) in Large Eddy Simulations of wind turbine flow is studied under the specific conditions of very coarse spatial resolutions. For finely-resolved conditions, it is known that ALM provides better accuracy compared to the standard Actuator Disk Model (ADM) without rotation. However, we show here that on very coarse resolutions, flow induction occurring at rotor scales can affect the predicted inflow angle and can adversely affect the ALM predictions. We first provide an illustration of coarse LES to reproduce wind tunnel measurements. The resulting flow predictions are good, but the challenges in predicting power outputs from the detailed ALM motivate more detailed analysis on a case with uniform inflow. We present a theoretical framework to compare the filtered quantities that enter the Large-Eddy Simulation equations as body forces with a scaling relation between the filtered and unfiltered quantities. The study aims to apply the theoretical derivation to the simulation framework and improve the current results for an ALM, especially in the near wake where the largest differences are observed.
The atmospheric incoming flow of a wind turbine is intimately connected to its power production as well as its structural stability. Here we present an incoming flow measurement of a utility-scale turbine at the high spatio-temporal resolution, using
This paper provides a review of the general experimental methodology of snow-powered flow visualization and super-large-scale particle imaging velocimetry (SLPIV), the corresponding field deployments and major scientific findings from our work on a 2
Super-large-scale particle image velocimetry (SLPIV) using natural snowfall is used to investigate the influence of nacelle and tower generated flow structures on the near-wake of a 2.5 MW wind turbine at the EOLOS field station. The analysis is base
MHD turbulence is likely to play an important role in several astrophysical scenarios where the magnetic Reynolds is very large. Numerically, these cases can be studied efficiently by means of Large Eddy Simulations, in which the computational resour
The present investigation provides the first field characterization of the influence of turbulent inflow on the blade structural response of a utility-scale wind turbine (2.5MW), using the unique facility available at the Eolos Wind Energy Research S