A theorem by Hall asserts that the multiplication in torsion free nilpotent groups of finite Hirsch length can be facilitated by polynomials. In this note we exhibit explicit Hall polynomials for the torsion free nilpotent groups of Hirsch length at most 5.
A famous result of Hall asserts that the multiplication and exponentiation in finitely generated torsion free nilpotent groups can be described by rational polynomials. We describe an algorithm to determine such polynomials for all torsion free nilpo
tent groups of given Hirsch length. We apply this to determine the Hall polynomials for all such groups of Hirsch length at most 7.
In this paper we determine the torsion free rank of the group of endotrivial modules for any finite group of Lie type, in both defining and non-defining characteristic. On our way to proving this, we classify the maximal rank $2$ elementary abelian $
ell$-subgroups in any finite group of Lie type, for any prime $ell$, which may be of independent interest.
Let $Gamma$ be a torsion-free hyperbolic group. We show that the set of solutions of any system of equations with one variable in $Gamma$ is a finite union of points and cosets of centralizers if and only if any two-generator subgroup of $Gamma$ is free.
We show that any nonabelian free group $F$ of finite rank is homogeneous; that is for any tuples $bar a$, $bar b in F^n$, having the same complete $n$-type, there exists an automorphism of $F$ which sends $bar a$ to $bar b$. We further study existe
ntial types and we show that for any tuples $bar a, bar b in F^n$, if $bar a$ and $bar b$ have the same existential $n$-type, then either $bar a$ has the same existential type as a power of a primitive element, or there exists an existentially closed subgroup $E(bar a)$ (resp. $E(bar b)$) of $F$ containing $bar a$ (resp. $bar b$) and an isomorphism $sigma : E(bar a) to E(bar b)$ with $sigma(bar a)=bar b$. We will deal with non-free two-generated torsion-free hyperbolic groups and we show that they are $exists$-homogeneous and prime. This gives, in particular, concrete examples of finitely generated groups which are prime and not QFA.
Suppose a residually finite group $G$ acts cocompactly on a contractible complex with strict fundamental domain $Q$, where the stabilizers are either trivial or have normal $mathbb{Z}$-subgroups. Let $partial Q$ be the subcomplex of $Q$ with nontrivi
al stabilizers. Our main result is a computation of the homology torsion growth of a chain of finite index normal subgroups of $G$. We show that independent of the chain, the normalized torsion limits to the torsion of $partial Q$, shifted a degree. Under milder assumptions of acyclicity of nontrivial stabilizers, we show similar formulas for the mod p-homology growth. We also obtain formulas for the universal and the usual $L^2$-torsion of $G$ in terms of the torsion of stabilizers and topology of $partial Q$. In particular, we get complete answers for right-angled Artin groups, which shows they satisfy a torsion analogue of the Luck approximation theorem.