ﻻ يوجد ملخص باللغة العربية
In this paper we determine the torsion free rank of the group of endotrivial modules for any finite group of Lie type, in both defining and non-defining characteristic. On our way to proving this, we classify the maximal rank $2$ elementary abelian $ell$-subgroups in any finite group of Lie type, for any prime $ell$, which may be of independent interest.
Classifying endotrivial kG-modules, i.e., elements of the Picard group of the stable module category for an arbitrary finite group G, has been a long-running quest, which by deep work of Dade, Alperin, Carlson, Thevenaz, and others, has been reduced
Let $q$ be a prime power and let $G$ be an absolutely irreducible subgroup of $GL_d(F)$, where $F$ is a finite field of the same characteristic as $F_q$, the field of $q$ elements. Assume that $G cong G(q)$, a quasisimple group of exceptional Lie typ
Let $G$ be a finite simple group of Lie type, and let $pi_G$ be the permutation representation of $G$ associated with the action of $G$ on itself by conjugation. We prove that every irreducible representation of $G$ is a constituent of $pi_G$, unless
We give a short proof of the fact that if all characteristic p simple modules of the finite group G have dimension less than p, then G has a normal Sylow p-subgroup.
This article extends the works of Gonc{c}alves, Guaschi, Ocampo [GGO] and Marin [MAR2] on finite subgroups of the quotients of generalized braid groups by the derived subgroup of their pure braid group. We get explicit criteria for subgroups of the (