ترغب بنشر مسار تعليمي؟ اضغط هنا

Torsion Free Endotrivial Modules for Finite Groups of Lie Type

172   0   0.0 ( 0 )
 نشر من قبل Daniel Nakano
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we determine the torsion free rank of the group of endotrivial modules for any finite group of Lie type, in both defining and non-defining characteristic. On our way to proving this, we classify the maximal rank $2$ elementary abelian $ell$-subgroups in any finite group of Lie type, for any prime $ell$, which may be of independent interest.

قيم البحث

اقرأ أيضاً

249 - Jesper Grodal 2016
Classifying endotrivial kG-modules, i.e., elements of the Picard group of the stable module category for an arbitrary finite group G, has been a long-running quest, which by deep work of Dade, Alperin, Carlson, Thevenaz, and others, has been reduced to understanding the subgroup consisting of modular representations that split as the trivial module direct sum a projective module when restricted to a Sylow p-subgroup. In this paper we identify this subgroup as the first cohomology group of the orbit category on non-trivial p-subgroups with values in the units k^x, viewed as a constant coefficient system. We then use homotopical techniques to give a number of formulas for this group in terms of the abelianization of normalizers and centralizers in G, in particular verifying the Carlson-Thevenaz conjecture--this reduces the calculation of this group to algorithmic calculations in local group theory rather than representation theory. We also provide strong restrictions on when such representations of dimension greater than one can occur, in terms of the p-subgroup complex and p-fusion systems. We immediately recover and extend a large number of computational results in the literature, and further illustrate the computational potential by calculating the group in other sample new cases, e.g., for the Monster at all primes.
Let $q$ be a prime power and let $G$ be an absolutely irreducible subgroup of $GL_d(F)$, where $F$ is a finite field of the same characteristic as $F_q$, the field of $q$ elements. Assume that $G cong G(q)$, a quasisimple group of exceptional Lie typ e over $F_q$ which is neither a Suzuki nor a Ree group. We present a Las Vegas algorithm that constructs an isomorphism from $G$ to the standard copy of $G(q)$. If $G otcong {}^3 D_4(q)$ with $q$ even, then the algorithm runs in polynomial time, subject to the existence of a discrete log oracle.
Let $G$ be a finite simple group of Lie type, and let $pi_G$ be the permutation representation of $G$ associated with the action of $G$ on itself by conjugation. We prove that every irreducible representation of $G$ is a constituent of $pi_G$, unless $G=PSU_n(q)$ and $n$ is coprime to $2(q+1)$, where precisely one irreducible representation fails. Let St be the Steinberg representation of $G$. We prove that a complex irreducible representation of $G$ is a constituent of the tensor square $Stotimes St$, with the same exceptions as in the previous statement.
We give a short proof of the fact that if all characteristic p simple modules of the finite group G have dimension less than p, then G has a normal Sylow p-subgroup.
86 - Vincent Beck 2017
This article extends the works of Gonc{c}alves, Guaschi, Ocampo [GGO] and Marin [MAR2] on finite subgroups of the quotients of generalized braid groups by the derived subgroup of their pure braid group. We get explicit criteria for subgroups of the ( complex) reflection group to lift to subgroups of this quotient. In the specific case of the classical braid group, this enables us to describe all its finite subgroups : we show that every odd-order finite group can be embedded in it, when the number of strands goes to infinity. We also determine a complete list of the irreducible reflection groups for which this quotient is a Bieberbach group.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا