ترغب بنشر مسار تعليمي؟ اضغط هنا

Torsion invariants of complexes of groups

162   0   0.0 ( 0 )
 نشر من قبل Kevin Schreve
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Suppose a residually finite group $G$ acts cocompactly on a contractible complex with strict fundamental domain $Q$, where the stabilizers are either trivial or have normal $mathbb{Z}$-subgroups. Let $partial Q$ be the subcomplex of $Q$ with nontrivial stabilizers. Our main result is a computation of the homology torsion growth of a chain of finite index normal subgroups of $G$. We show that independent of the chain, the normalized torsion limits to the torsion of $partial Q$, shifted a degree. Under milder assumptions of acyclicity of nontrivial stabilizers, we show similar formulas for the mod p-homology growth. We also obtain formulas for the universal and the usual $L^2$-torsion of $G$ in terms of the torsion of stabilizers and topology of $partial Q$. In particular, we get complete answers for right-angled Artin groups, which shows they satisfy a torsion analogue of the Luck approximation theorem.



قيم البحث

اقرأ أيضاً

We show that any one-relator group $G=F/langlelangle wranglerangle$ with torsion is coherent -- i.e., that every finitely generated subgroup of $G$ is finitely presented -- answering a 1974 question of Baumslag in this case.
We study uniform exponential growth of groups acting on CAT(0) cube complexes. We show that groups acting without global fixed points on CAT(0) square complexes either have uniform exponential growth or stabilize a Euclidean subcomplex. This generali zes the work of Kar and Sageev considers free actions. Our result lets us show uniform exponential growth for certain groups that act improperly on CAT(0) square complexes, namely, finitely generated subgroups of the Higman group and triangle-free Artin groups. We also obtain that non-virtually abelian groups acting freely on CAT(0) cube complexes of any dimension with isolated flats that admit a geometric group action have uniform exponential growth.
We show that Out(G) is residually finite if G is a one-ended group that is hyperbolic relative to virtually polycyclic subgroups. More generally, if G is one-ended and hyperbolic relative to proper residually finite subgroups, the group of outer auto morphisms preserving the peripheral structure is residually finite. We also show that Out(G) is virtually p-residually finite for every prime p if G is one-ended and toral relatively hyperbolic, or infinitely-ended and virtually p-residually finite.
86 - Vincent Beck 2017
This article extends the works of Gonc{c}alves, Guaschi, Ocampo [GGO] and Marin [MAR2] on finite subgroups of the quotients of generalized braid groups by the derived subgroup of their pure braid group. We get explicit criteria for subgroups of the ( complex) reflection group to lift to subgroups of this quotient. In the specific case of the classical braid group, this enables us to describe all its finite subgroups : we show that every odd-order finite group can be embedded in it, when the number of strands goes to infinity. We also determine a complete list of the irreducible reflection groups for which this quotient is a Bieberbach group.
We simplify the construction of projection complexes due to Bestvina-Bromberg-Fujiwara. To do so, we introduce a sharper version of the Behrstock inequality, and show that it can always be enforced. Furthermore, we use the new setup to prove acylindr icity results for the action on the projection complexes. We also treat quasi-trees of metric spaces associated to projection complexes, and prove an acylindricity criterion in that context as well.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا