ﻻ يوجد ملخص باللغة العربية
For a tuple $A=(A_1, A_2, ..., A_n)$ of elements in a unital Banach algebra ${mathcal B}$, its {em projective joint spectrum} $P(A)$ is the collection of $zin {mathbb C}^n$ such that the multiparameter pencil $A(z)=z_1A_1+z_2A_2+cdots +z_nA_n$ is not invertible. If ${mathcal B}$ is the group $C^*$-algebra for a discrete group $G$ generated by $A_1, A_2, ..., A_n$ with respect to a representation $rho$, then $P(A)$ is an invariant of (weak) equivalence for $rho$. This paper computes the joint spectrum of $(1, a, t)$ for the infinite dihedral group $D_{infty}=<a, t | a^2=t^2=1>$ with respect to the left regular representation $lambda_D$, and gives an in-depth analysis on its properties. A formula for the Fuglede-Kadison determinant of the pencil $R(z)=1+z_1a+z_2t$ is obtained, and it is used to compute the first singular homology group of the joint resolvent set $P^c(R)$. The joint spectrum gives new insight into some earlier studies on groups of intermediate growth, through which the corresponding joint spectrum of $(1, a, t)$ with respect to the Koopman representation $rho$ (constructed through a self-similar action of $D_{infty}$ on a binary tree) can be computed. It turns out that the joint spectra with respect to the two representations coincide. Interestingly, this fact leads to a self-similar realization of the group $C^*$-algebra $C^*(D_{infty})$. This self-similarity of $C^*(D_{infty})$ is manifested by some dynamical properties of the joint spectrum.
Let $G=QD_{8k}~$ be the quasi-dihedral group of order $8n$ and $theta$ be an automorphism of $QD_{8k}$ of finite order. The fixed-point set $H$ of $theta$ is defined as $H_{theta}=G^{theta}={xin G mid theta(x)=x}$ and generalized symmetric space $Q$
We provide an explicit presentation of an infinite hyperbolic Kazhdan group with $4$ generators and $16$ relators of length at most $73$. That group acts properly and cocompactly on a hyperbolic triangle building of type $(3,4,4)$. We also point out
Let k be an algebraically closed field of characteristic 2, and let W be the ring of infinite Witt vectors over k. Suppose G is a finite group and B is a block of kG with a dihedral defect group D such that there are precisely two isomorphism classes
Let $(mathcal{G},Gamma)$ be an abstract graph of finite groups. If $Gamma$ is finite, we can construct a profinite graph of groups in a natural way $(hat{mathcal{G}},Gamma)$, where $hat{mathcal{G}}(m)$ is the profinite completion of $mathcal{G}(m)$ f
We initiate the study of analogues of symmetric spaces for the family of finite dihedral groups. In particular, we investigate the structure of the automorphism group, characterize the involutions of the automorphism group, and determine the fixed-group and symmetric space of each automorphism.