ترغب بنشر مسار تعليمي؟ اضغط هنا

Determination of the zero-field magnetic structure of the helimagnet MnSi at low temperature

79   0   0.0 ( 0 )
 نشر من قبل P. Dalmas de Reotier
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Below a temperature of approximately 29 K the manganese magnetic moments of the cubic binary compound MnSi order to a long-range incommensurate helical magnetic structure. Here, we quantitatively analyze a high-statistic zero-field muon spin rotation spectrum recorded in the magnetically ordered phase of MnSi by exploiting the result of representation theory as applied to the determination of magnetic structures. Instead of a gradual rotation of the magnetic moments when moving along a <111> axis, we find that the angle of rotation between the moments of certain subsequent planes is essentially quenched. It is the magnetization of pairs of planes which rotates when moving along a <111> axis, thus preserving the overall helical structure.



قيم البحث

اقرأ أيضاً

The low temperature dependence of the nuclear magnetic resonance frequency and spin-lattice relaxation rate measured in the chiral magnet MnSi by Yasuoka and coworkers [J. Phys. Soc. Jpn. 85, 073701 (2016)] is interpreted in terms of helimagnon excit ations. The theoretically predicted gapless and anisotropic dispersion relation which is probed at extremely small energy is experimentally confirmed. Whenever comparison is possible, the results are found quantitatively consistent with those of the inelastic neutron scattering and muon spin rotation and relaxation techniques. Further studies are suggested.
In the light of recent results obtained for the prototype helimagnet MnSi we examine the possible magnetic structures of compounds of the same family, consistent with the crystal symmetries when the magnetic propagation vector is parallel to the [001 ] axis. The analysis of a published muon spin rotation spectrum recorded in MnGe [Phys. Rev. B 93, 174405 (2016)] shows no deviation from the canonical helimagnetic structure, unlike in MnSi. This qualitative difference calls for further theoretical works on chiral magnets.
In this letter we describe the ground-state magnetic structure of the highly anisotropic helimagnet Cr$_{1/3}$NbS$_2$ in a magnetic field. A Heisenberg spin model with Dyzaloshinkii-Moriya interactions and magne- tocrystalline anisotropy allows the g round state spin structure to be calculated for magnetic fields of arbitrary strength and direction. Comparison with magnetization measurements shows excellent agreement with the predicted spin structure.
We present detailed, low temperature, magnetoresistance and specific heat data of single crystal YbNiSi3 measured in magnetic field applied along the easy magnetic axis, H || b. An initially antiferromagnetic ground state changes into a field-induced metamagnetic phase at ~16 kOe (T -> 0). On further increase of magnetic field, magnetic order is suppressed at ~85 kOe. The functional behaviors of the resistivity and specific heat are discussed in comparison with those of the few other stoichiometric, heavy fermion compounds with established field-induced quantum critical point.
Anisotropic low-temperature properties of the cubic spinel helimagnet ZnCr2Se4 in the single-domain spin-spiral state are investigated by a combination of neutron scattering, thermal conductivity, ultrasound velocity, and dilatometry measurements. In an applied magnetic field, neutron spectroscopy shows a complex and nonmonotonic evolution of the spin-wave spectrum across the quantum-critical point that separates the spin-spiral phase from the field-polarized ferromagnetic phase at high fields. A tiny spin gap of the pseudo-Goldstone magnon mode, observed at wave vectors that are structurally equivalent but orthogonal to the propagation vector of the spin helix, vanishes at this quantum critical point, restoring the cubic symmetry in the magnetic subsystem. The anisotropy imposed by the spin helix has only a minor influence on the lattice structure and sound velocity but has a much stronger effect on the heat conductivities measured parallel and perpendicular to the magnetic propagation vector. The thermal transport is anisotropic at T < 2 K, highly sensitive to an external magnetic field, and likely results directly from magnonic heat conduction. We also report long-time thermal relaxation phenomena, revealed by capacitive dilatometry, which are due to magnetic domain motion related to the destruction of the single-domain magnetic state, initially stabilized in the sample by the application and removal of magnetic field. Our results can be generalized to a broad class of helimagnetic materials in which a discrete lattice symmetry is spontaneously broken by the magnetic order.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا