ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic field tuning of the low temperature state in YbNiSi3

70   0   0.0 ( 0 )
 نشر من قبل S. L. Bud'ko
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present detailed, low temperature, magnetoresistance and specific heat data of single crystal YbNiSi3 measured in magnetic field applied along the easy magnetic axis, H || b. An initially antiferromagnetic ground state changes into a field-induced metamagnetic phase at ~16 kOe (T -> 0). On further increase of magnetic field, magnetic order is suppressed at ~85 kOe. The functional behaviors of the resistivity and specific heat are discussed in comparison with those of the few other stoichiometric, heavy fermion compounds with established field-induced quantum critical point.



قيم البحث

اقرأ أيضاً

224 - C. R. Rotundu , B. Andraka 2004
Specific heat for single crystalline samples of Ce1-xLaxOs4Sb12 at zero-field and magnetic fields to 14 T is reported. Our results confirm enhanced value of the electronic specific heat coefficient in the paramagnetic state. They provide arguments fo r the intrinsic origin of the 1.1 K anomaly. This transition leads to opening of the gap at the Fermi surface. This low temperature state of CeOs4Sb12 is extremely sensitive to chemical impurities. 2% of La substituted for Ce suppresses the transition and reduces the electronic specific heat coefficient. The magnetic field response of the specific heat is also anomalous.
Below a temperature of approximately 29 K the manganese magnetic moments of the cubic binary compound MnSi order to a long-range incommensurate helical magnetic structure. Here, we quantitatively analyze a high-statistic zero-field muon spin rotation spectrum recorded in the magnetically ordered phase of MnSi by exploiting the result of representation theory as applied to the determination of magnetic structures. Instead of a gradual rotation of the magnetic moments when moving along a <111> axis, we find that the angle of rotation between the moments of certain subsequent planes is essentially quenched. It is the magnetization of pairs of planes which rotates when moving along a <111> axis, thus preserving the overall helical structure.
The anisotropic triangular lattice of the crednerite system Cu(Mn1-xCux)O2 is used as a basic model for studying the influence of spin disorder on the ground state properties of a two-dimensional frustrated antiferromagnet. Neutron diffraction measur ements show that the undoped phase (x=0) undergoes a transition to antiferromagnetic long-range order that is stabilized by a frustration-relieving structural distortion. Small deviation from the stoichiometric composition alters the magnetoelastic characteristics and reduces the effective dimensionality of the magnetic lattice. Upon increasing the doping level, the interlayer coupling changes from antiferromagnetic to ferromagnetic. As the structural distortion is suppressed, the long-range magnetic order is gradually transformed into a two-dimensional order.
We present magnetic susceptibility, heat capacity, and neutron diffraction measurements of polycrystalline Nd2Ru2O7 down to 0.4 K. Three anomalies in the magnetic susceptibility measurements at 146, 21 and 1.8 K are associated with an antiferromagnet ic ordering of the Ru4+ moments, a weak ferromagnetic signal attributed to a canting of the Ru4+ and Nd3+ moments, and a long-range-ordering of the Nd3+ moments, respectively. The long-range order of the Nd3+ moments was observed in all the measurements, indicating that the ground state of the compound is not a spin glass. The magnetic entropy of Rln2 accumulated up to 5 K, suggests the Nd3+ has a doublet ground state. Lattice distortions accompany the transitions, as revealed by neutron diffraction measurements, and in agreement with earlier synchrotron x-ray studies. The magnetic moment of the Nd3+ ion at 0.4 K is estimated to be 1.54(2){mu}B and the magnetic structure is all-in all-out as determined by our neutron diffraction measurements.
107 - A. Hen , E. Colineau , R. Eloirdi 2014
We present the result of an extended experimental characterization of the hexagonal intermetallic Haucke compound NpNi$_{5}$. By combining macroscopic and shell-specific techniques, we determine the 5$f$-shell occupation number $n_f$ close to 4 for t he Np ions, together with orbital and spin components of the ordered moment in the ferromagnetic phase below T$_C$ = 16 K ($mu_{S}$ = -1.88~$mu_{B}$ and $mu_{L}$ = 3.91~$mu_{B}$). The apparent coexistence of ordered and disordered phases observed in the M{o}ssbauer spectra is explained in terms of slow relaxation between the components of a quasi-triplet ground state. The ratio between the expectation value of the magnetic dipole operator and the spin magnetic moment ($3langle T_{z}rangle/ langle S_{z}rangle$ = +1.43) is positive and large, suggesting a localized character of the 5$f$ electrons. The angular part of the spin-orbit coupling ($langlevec{ell}cdotvec{s}rangle$ = -5.55) is close to the value of -6.25 calculated for trivalent Np ions in intermediate coupling approximation. The results are discussed against the prediction of first-principle electronic structure calculations based on the spin-polarized local spin density approximation plus Hubbard interaction, and of a mean field model taking into account crystal field and exchange interactions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا