ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic structure of the MnGe helimagnet and representation analysis

66   0   0.0 ( 0 )
 نشر من قبل P. Dalmas de Reotier
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the light of recent results obtained for the prototype helimagnet MnSi we examine the possible magnetic structures of compounds of the same family, consistent with the crystal symmetries when the magnetic propagation vector is parallel to the [001] axis. The analysis of a published muon spin rotation spectrum recorded in MnGe [Phys. Rev. B 93, 174405 (2016)] shows no deviation from the canonical helimagnetic structure, unlike in MnSi. This qualitative difference calls for further theoretical works on chiral magnets.

قيم البحث

اقرأ أيضاً

Below a temperature of approximately 29 K the manganese magnetic moments of the cubic binary compound MnSi order to a long-range incommensurate helical magnetic structure. Here, we quantitatively analyze a high-statistic zero-field muon spin rotation spectrum recorded in the magnetically ordered phase of MnSi by exploiting the result of representation theory as applied to the determination of magnetic structures. Instead of a gradual rotation of the magnetic moments when moving along a <111> axis, we find that the angle of rotation between the moments of certain subsequent planes is essentially quenched. It is the magnetization of pairs of planes which rotates when moving along a <111> axis, thus preserving the overall helical structure.
In this letter we describe the ground-state magnetic structure of the highly anisotropic helimagnet Cr$_{1/3}$NbS$_2$ in a magnetic field. A Heisenberg spin model with Dyzaloshinkii-Moriya interactions and magne- tocrystalline anisotropy allows the g round state spin structure to be calculated for magnetic fields of arbitrary strength and direction. Comparison with magnetization measurements shows excellent agreement with the predicted spin structure.
100 - J. Chovan , N. Papanicolaou 2005
The layered magnetic compound Ba_2CuGe_2O_7 exhibits spiral antiferromagnetic order thanks to a Dzyaloshinskii-Moriya (DM) anisotropy that is allowed by crystal symmetry. Here we theoretically examine some finer issues such as the experimentally obse rved lattice pinning of the propagation vector of helical magnetic domains. We find that DM anisotropy alone would lead to incorrect pinning, but agreement with experiment is restored upon including an additional exchange anisotropy that is also consistent with symmetry. The present results shed light on the so-called bisection rule which has been abstracted from experiment in presence of an in-plane magnetic field.
We present magnetization, specific heat, resistivity, and Hall effect measurements on the cubic B20 phase of MnGe and CoGe and compare to measurements of isostructural FeGe and electronic structure calculations. In MnGe, we observe a transition to a magnetic state at $T_c=275$ K as identified by a sharp peak in the ac magnetic susceptibility, as well as second phase transition at lower temperature that becomes apparent only at finite magnetic field. We discover two phase transitions in the specific heat at temperatures much below the Curie temperature one of which we associate with changes to the magnetic structure. A magnetic field reduces the temperature of this transition which corresponds closely to the sharp peak observed in the ac susceptibility at fields above 5 kOe. The second of these transitions is not affected by the application of field and has no signature in the magnetic properties or our crystal structure parameters. Transport measurements indicate that MnGe is metal with a negative magnetoresistance similar to that seen in isostructural FeGe and MnSi. Hall effect measurements reveal a carrier concentration of about 0.5 carriers per formula unit also similar to that found in FeGe and MnSi. CoGe is shown to be a low carrier density metal with a very small, nearly temperature independent diamagnetic susceptibility.
The chiral helimagnet Cr1/3NbS2 has been investigated by magnetic, transport and thermal properties measurements on single crystals and by first principles electronic structure calculations. From the measured field and temperature dependence of the m agnetization for fields applied perpendicular to the c axis, the magnetic phase diagram has been constructed in the vicinity of the phase transitions. A transition from a paramagnetic to a magnetically ordered phase occurs near 120 K. With increasing magnetic field and at temperatures below 120 K, this material undergoes transitions from a helimagnetic to a soliton-lattice phase near 900 Oe, and then to a ferromagnetic phase near 1300 Oe. The transitions are found to strongly affect the electrical transport. The resistivity decreases sharply upon cooling near 120 K, and the spin reorientation from the helimagnetic ground state to the commensurate ferromagnetic state is evident in the magnetoresistance. At high fields a large magnetoresistance (55 % at 140 kOe) is observed near the magnetic transition temperature. Heat capacity and electronic structure calculations show the density of states at the Fermi level is low in the magnetically ordered state. Effects of spin fluctuations are likely important in understanding the behavior of Cr1/3NbS2 near and above the magnetic ordering transitions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا