ﻻ يوجد ملخص باللغة العربية
We study a nonlinear equation in the half-space ${x_1>0}$ with a Hardy potential, specifically [-Delta u -frac{mu}{x_1^2}u+u^p=0quadtext{in}quad mathbb R^n_+,] where $p>1$ and $-infty<mu<1/4$. The admissible boundary behavior of the positive solutions is either $O(x_1^{-2/(p-1)})$ as $x_1to 0$, or is determined by the solutions of the linear problem $-Delta h -frac{mu}{x_1^2}h=0$. In the first part we study in full detail the separable solutions of the linear equations for the whole range of $mu$. In the second part, by means of sub and supersolutions we construct separable solutions of the nonlinear problem which behave like $O(x_1^{-2/(p-1)})$ near the origin and which, away from the origin have exactly the same asymptotic behavior as the separable solutions of the linear problem. In the last part we construct solutions that behave like $O(x_1^{-2/(p-1)})$ at some prescribed parts of the boundary, while at the rest of the boundary the solutions decay or blowup at a slower rate determined by the linear part of the equation.
Let $Omega subset mathbb{R}^N$ be a bounded domain and $delta(x)$ be the distance of a point $xin Omega$ to the boundary. We study the positive solutions of the problem $Delta u +frac{mu}{delta(x)^2}u=u^p$ in $Omega$, where $p>0, ,p e 1$ and $mu in m
Given a smooth domain $OmegasubsetRR^N$ such that $0 in partialOmega$ and given a nonnegative smooth function $zeta$ on $partialOmega$, we study the behavior near 0 of positive solutions of $-Delta u=u^q$ in $Omega$ such that $u = zeta$ on $partialOm
Let $Omega subset {mathbb R}^N$ ($N geq 3$) be a $C^2$ bounded domain and $delta$ be the distance to $partial Omega$. We study positive solutions of equation (E) $-L_mu u+ g(| abla u|) = 0$ in $Omega$ where $L_mu=Delta + frac{mu}{delta^2} $, $mu in (
In this paper, we consider the pointwise boundary Lipschitz regularity of solutions for the semilinear elliptic equations in divergence form mainly under some weaker assumptions on nonhomogeneous term and the boundary. If the domain satisfies C^{1,te
We investigate existence and nonexistence of stationary stable nonconstant solutions, i.e. patterns, of semilinear parabolic problems in bounded domains of Riemannian manifolds satisfying Robin boundary conditions. These problems arise in several mod