ﻻ يوجد ملخص باللغة العربية
We investigate existence and nonexistence of stationary stable nonconstant solutions, i.e. patterns, of semilinear parabolic problems in bounded domains of Riemannian manifolds satisfying Robin boundary conditions. These problems arise in several models in applications, in particular in Mathematical Biology. We point out the role both of the nonlinearity and of geometric objects such as the Ricci curvature of the manifold, the second fundamental form of the boundary of the domain and its mean curvature. Special attention is devoted to surfaces of revolution and to spherically symmetric manifolds, where we prove refined results.
We study existence and non-existence of global solutions to the semilinear heat equation with a drift term and a power-like source term, on Cartan-Hadamard manifolds. Under suitable assumptions on Ricci and sectional curvatures, we show that global s
We prove nonexistence of nontrivial, possibly sign changing, stable solutions to a class of quasilinear elliptic equations with a potential on Riemannian manifolds, under suitable weighted volume growth conditions on geodesic balls.
We investigate existence and uniqueness of bounded solutions of parabolic equations with unbounded coefficients in $Mtimes mathbb R_+$, where $M$ is a complete noncompact Riemannian manifold. Under specific assumptions, we establish existence of solu
Given a smooth domain $OmegasubsetRR^N$ such that $0 in partialOmega$ and given a nonnegative smooth function $zeta$ on $partialOmega$, we study the behavior near 0 of positive solutions of $-Delta u=u^q$ in $Omega$ such that $u = zeta$ on $partialOm
We classify positive solutions to a class of quasilinear equations with Neumann or Robin boundary conditions in convex domains. Our main tool is an integral formula involving the trace of some relevant quantities for the problem. Under a suitable con