ترغب بنشر مسار تعليمي؟ اضغط هنا

Boundary Lipschitz regularity of solutions for semilinear elliptic equations in divergence form

86   0   0.0 ( 0 )
 نشر من قبل Jingqi Liang
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we consider the pointwise boundary Lipschitz regularity of solutions for the semilinear elliptic equations in divergence form mainly under some weaker assumptions on nonhomogeneous term and the boundary. If the domain satisfies C^{1,text{Dini}} condition at a boundary point, and the nonhomogeneous term satisfies Dini continuous condition and Lipschitz Newtonian potential condition, then the solution is Lipschitz continuous at this point. Furthermore, we generalize this result to Reifenberg C^{1,text{Dini}} domains.



قيم البحث

اقرأ أيضاً

81 - Louis Dupaigne 2021
In the present paper, we investigate the regularity and symmetry properties of weak solutions to semilinear elliptic equations which are locally stable.
Given a smooth domain $OmegasubsetRR^N$ such that $0 in partialOmega$ and given a nonnegative smooth function $zeta$ on $partialOmega$, we study the behavior near 0 of positive solutions of $-Delta u=u^q$ in $Omega$ such that $u = zeta$ on $partialOm egasetminus{0}$. We prove that if $frac{N+1}{N-1} < q < frac{N+2}{N-2}$, then $u(x)leq C abs{x}^{-frac{2}{q-1}}$ and we compute the limit of $abs{x}^{frac{2}{q-1}} u(x)$ as $x to 0$. We also investigate the case $q= frac{N+1}{N-1}$. The proofs rely on the existence and uniqueness of solutions of related equations on spherical domains.
This paper extends the theory of regular solutions ($C^1$ in a suitable sense) for a class of semilinear elliptic equations in Hilbert spaces. The notion of regularity is based on the concept of $G$-derivative, which is introduced and discussed. A re sult of existence and uniqueness of solutions is stated and proved under the assumption that the transition semigroup associated to the linear part of the equation has a smoothing property, that is, it maps continuous functions into $G$-differentiable ones. The validity of this smoothing assumption is fully discussed for the case of the Ornstein-Uhlenbeck transition semigroup and for the case of invertible diffusion coefficient covering cases not previously addressed by the literature. It is shown that the results apply to Hamilton-Jacobi-Bellman (HJB) equations associated to infinite horizon optimal stochastic control problems in infinite dimension and that, in particular, they cover examples of optimal boundary control of the heat equation that were not treatable with the approaches developed in the literature up to now.
116 - YanYan Li 2016
We prove $C^1$ regularity of solutions to divergence form elliptic systems with Dini-continuous coefficients
171 - Hongjie Dong , Doyoon Kim 2009
The solvability in Sobolev spaces is proved for divergence form second order elliptic equations in the whole space, a half space, and a bounded Lipschitz domain. For equations in the whole space or a half space, the leading coefficients $a^{ij}$ are assumed to be measurable in one direction and have small BMO semi-norms in the other directions. For equations in a bounded domain, additionally we assume that $a^{ij}$ have small BMO semi-norms in a neighborhood of the boundary of the domain. We give a unified approach of both the Dirichlet boundary problem and the conormal derivative problem. We also investigate elliptic equations in Sobolev spaces with mixed norms under the same assumptions on the coefficients.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا