ترغب بنشر مسار تعليمي؟ اضغط هنا

Holographic Quenches with a Gap

99   0   0.0 ( 0 )
 نشر من قبل Esperanza Lopez
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In order to holographically model quenches with a gapped final hamiltonian, we consider a gravity-scalar theory in anti-de Sitter space with an infrared hard wall. We allow a time dependent profile for the scalar field at the wall. This induces an energy exchange between bulk and wall and generates an oscillating scalar pulse. We argue that such backgrounds are the counterpart of quantum revivals in the dual field theory. We perform a qualitative comparison with the quench dynamics of the massive Schwinger model, which has been recently analyzed using tensor network techniques. Agreement is found provided the width of the oscillating scalar pulse is inversely linked to the energy density communicated by the quench. We propose this to be a general feature of holographic quenches.



قيم البحث

اقرأ أيضاً

We study holographic models related to global quantum quenches in finite size systems. The holographic set up describes naturally a CFT, which we consider on a circle and a sphere. The enhanced symmetry of the conformal group on the circle motivates us to compare the evolution in both cases. Depending on the initial conditions, the dual geometry exhibits oscillations that we holographically interpret as revivals of the initial field theory state. On the sphere, this only happens when the energy density created by the quench is small compared to the system size. However on the circle considerably larger energy densities are compatible with revivals. Two different timescales emerge in this latter case. A collapse time, when the system appears to have dephased, and the revival time, when after rephasing the initial state is partially recovered. The ratio of these two times depends upon the initial conditions in a similar way to what is observed in some experimental setups exhibiting collapse and revivals.
Understanding quantum entanglement in interacting higher-dimensional conformal field theories is a challenging task, as direct analytical calculations are often impossible to perform. With holographic entanglement entropy, calculations of entanglemen t entropy turn into a problem of finding extremal surfaces in a curved spacetime, which we tackle with a numerical finite-element approach. In this paper, we compute the entanglement entropy between two half-spaces resulting from a local quench, triggered by a local operator insertion in a CFT$_3$. We find that the growth of entanglement entropy at early time agrees with the prediction from the first law, as long as the conformal dimension $Delta$ of the local operator is small. Within the limited time region that we can probe numerically, we observe deviations from the first law and a transition to sub-linear growth at later time. In particular, the time dependence at large $Delta$ shows qualitative differences to the simple logarithmic time dependence familiar from the CFT$_2$ case. We hope that our work will motivate further studies, both numerical and analytical, on entanglement entropy in higher dimensions.
135 - Ning Bao , Illan F. Halpern 2017
We study the conjectured holographic duality between entanglement of purification and the entanglement wedge cross-section. We generalize both quantities and prove several information theoretic inequalities involving them. These include upper bounds on conditional mutual information and tripartite information, as well as a lower bound for tripartite information. These inequalities are proven both holographically and for general quantum states. In addition, we use the cyclic entropy inequalities to derive a new holographic inequality for the entanglement wedge cross-section, and provide numerical evidence that the corresponding inequality for the entanglement of purification may be true in general. Finally, we use intuition from bit threads to extend the conjecture to holographic duals of suboptimal purifications.
161 - P. N. Kopnin , A. Krikun 2011
The aim of this work is to study the holographic dual to the gauge theory with a nonzero gluon condensate. We check for consistency the holographic way of describing the condensate and calculate the expectation value of a small Wilson loop in the pre sence of the gluon condensate, thus obtaining the relevant coefficient in the operator product expansion of the small loop in different holographic models. We also study the effect of the condensate on the Gross-Ooguri phase transition in the correlator of two circular Wilson loops in parallel and concentric configurations. In the numerical study of the concentric case, we find that the phase transition changes its order when the size of the loops is of order of the gluon condensate. We report this change of the phase transition order to be a new effect in Wilson loop correlators.
Holographic quantum error-correcting codes have been proposed as toy models that describe key aspects of the AdS/CFT correspondence. In this work, we introduce a versatile framework of Majorana dimers capturing the intersection of stabilizer and Gaus sian Majorana states. This picture allows for an efficient contraction with a simple diagrammatic interpretation and is amenable to analytical study of holographic quantum error-correcting codes. Equipped with this framework, we revisit the recently proposed hyperbolic pentagon code (HyPeC). Relating its logical code basis to Majorana dimers, we efficiently compute boundary state properties even for the non-Gaussian case of generic logical input. The dimers characterizing these boundary states coincide with discrete bulk geodesics, leading to a geometric picture from which properties of entanglement, quantum error correction, and bulk/boundary operator mapping immediately follow. We also elaborate upon the emergence of the Ryu-Takayanagi formula from our model, which realizes many of the properties of the recent bit thread proposal. Our work thus elucidates the connection between bulk geometry, entanglement, and quantum error correction in AdS/CFT, and lays the foundation for new models of holography.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا