ترغب بنشر مسار تعليمي؟ اضغط هنا

Holographic Inequalities and Entanglement of Purification

136   0   0.0 ( 0 )
 نشر من قبل Illan Halpern
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the conjectured holographic duality between entanglement of purification and the entanglement wedge cross-section. We generalize both quantities and prove several information theoretic inequalities involving them. These include upper bounds on conditional mutual information and tripartite information, as well as a lower bound for tripartite information. These inequalities are proven both holographically and for general quantum states. In addition, we use the cyclic entropy inequalities to derive a new holographic inequality for the entanglement wedge cross-section, and provide numerical evidence that the corresponding inequality for the entanglement of purification may be true in general. Finally, we use intuition from bit threads to extend the conjecture to holographic duals of suboptimal purifications.



قيم البحث

اقرأ أيضاً

We explore a conformal field theoretic interpretation of the holographic entanglement of purification, which is defined as the minimal area of entanglement wedge cross section. We argue that in AdS3/CFT2, the holographic entanglement of purification agrees with the entanglement entropy for a purified state, obtained from a special Weyl transformation, called path-integral optimizations. By definition, this special purified state has the minimal path-integral complexity. We confirm this claim in several examples.
In the presence of finite chemical potential $mu$, we holographically compute the entanglement of purification in a $2+1$- and $3+1$-dimensional field theory and also in a $3+1$-dimensional field theory with a critical point. We observe that compared to $2+1$- and $3+1$-dimensional field theories, the behavior of entanglement of purification near critical point is different and it is not a monotonic function of $frac{mu}{T}$ where $T$ is the temperature of the field theory. Therefore, the entanglement of purification distinguishes the critical point in the field theory. We also discuss the dependence of the holographic entanglement of purification on the various parameters of the theories. Moreover, the critical exponent is calculated.
We study holographic subregion complexity, and its possible connection to purification complexity suggested recently by Agon et al. In particular, we study the conjecture that subregion complexity is the purification complexity by considering hologra phic purifications of a holographic mixed state. We argue that these include states with any amount of coarse-graining consistent with being a purification of the mixed state in question, corresponding holographically to different choices of the cutoff surface. We find that within the complexity = volume and complexity = spacetime volume conjectures, the subregion complexity is equal to the holographic purification complexity. For complexity = action, the subregion complexity seems to provide an upper bound on the holographic purification complexity, though we show cases where this bound is not saturated. One such example is provided by black holes with a large genus behind the horizon, which were studied by Fu et al. As such, one must conclude that these offending geometries are not holographic, that CA must be modified, or else that holographic subregion complexity in CA is not dual to the purification complexity of the corresponding reduced state.
In the holographic correspondence, subregion duality posits that knowledge of the mixed state of a finite spacelike region of the boundary theory allows full reconstruction of a specific region of the bulk, known as the entanglement wedge. This state ment has been proven for local bulk operators. In this paper, specializing first for simplicity to a Rindler wedge of AdS$_3$, we find that generic curves within the wedge are in fact not fully reconstructible with entanglement entropies in the corresponding boundary region, even after using the most general variant of hole-ography, which was recently shown to suffice for reconstruction of arbitrary spacelike curves in the Poincare patch. This limitation is an analog of the familiar phenomenon of entanglement shadows, which we call entanglement shade. We overcome it by showing that the information about the nonreconstructible curve segments is encoded in a slight generalization of the concept of entanglement of purification, whose holographic dual has been discussed very recently. We introduce the notion of differential purification, and demonstrate that, in combination with differential entropy, it enables the complete reconstruction of all spacelike curves within an arbitrary entanglement wedge in any 3-dimensional bulk geometry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا