ترغب بنشر مسار تعليمي؟ اضغط هنا

Wilson loops in holographic models with a gluon condensate

162   0   0.0 ( 0 )
 نشر من قبل Alexander Krikun
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The aim of this work is to study the holographic dual to the gauge theory with a nonzero gluon condensate. We check for consistency the holographic way of describing the condensate and calculate the expectation value of a small Wilson loop in the presence of the gluon condensate, thus obtaining the relevant coefficient in the operator product expansion of the small loop in different holographic models. We also study the effect of the condensate on the Gross-Ooguri phase transition in the correlator of two circular Wilson loops in parallel and concentric configurations. In the numerical study of the concentric case, we find that the phase transition changes its order when the size of the loops is of order of the gluon condensate. We report this change of the phase transition order to be a new effect in Wilson loop correlators.



قيم البحث

اقرأ أيضاً

There is growing evidence that on-shell gluon scattering amplitudes in planar N=4 SYM theory are equivalent to Wilson loops evaluated over contours consisting of straight, light-like segments defined by the momenta of the external gluons. This equiva lence was first suggested at strong coupling using the AdS/CFT correspondence and has since been verified at weak coupling to one loop in perturbation theory. Here we perform an explicit two-loop calculation of the Wilson loop dual to the four-gluon scattering amplitude and demonstrate that the relation holds beyond one loop. We also propose an anomalous conformal Ward identity which uniquely fixes the form of the finite part (up to an additive constant) of the Wilson loop dual to four- and five-gluon amplitudes, in complete agreement with the BDS conjecture for the multi-gluon MHV amplitudes.
We present further evidence for a dual conformal symmetry in the four-gluon planar scattering amplitude in N=4 SYM. We show that all the momentum integrals appearing in the perturbative on-shell calculations up to five loops are dual to true conforma l integrals, well defined off shell. Assuming that the complete off-shell amplitude has this dual conformal symmetry and using the basic properties of factorization of infrared divergences, we derive the special form of the finite remainder previously found at weak coupling and recently reproduced at strong coupling by AdS/CFT. We show that the same finite term appears in a weak coupling calculation of a Wilson loop whose contour consists of four light-like segments associated with the gluon momenta. We also demonstrate that, due to the special form of the finite remainder, the asymptotic Regge limit of the four-gluon amplitude coincides with the exact expression evaluated for arbitrary values of the Mandelstam variables.
64 - Amit Dekel 2016
We study dual conformal transformations of minimal area surfaces in $AdS_5 times S^5$ corresponding to holographic smooth Wilson loops and some other related observables. To act with dual conformal transformations we map the string solutions to the d ual space by means of T-duality, then we apply a conformal transformation and finally T-dualize back to the original space. The transformation maps between string solutions with different boundary contours. The boundary contours of the minimal surfaces are not mapped back to the AdS boundary, and the regularized area of the surface changes.
We construct the D3-brane solution in the holographic dual of the N = 2* theory that describes Wilson lines in symmetric representations of the gauge group. The results perfectly agree with the direct field-theory predictions based on localization.
We study Feynman integrals and scattering amplitudes in ${cal N}=4$ super-Yang-Mills by exploiting the duality with null polygonal Wilson loops. Certain Feynman integrals, including one-loop and two-loop chiral pentagons, are given by Feynman diagram s of a supersymmetric Wilson loop, where one can perform loop integrations and be left with simple integrals along edges. As the main application, we compute analytically for the first time, the symbol of the generic ($ngeq 12$) double pentagon, which gives two-loop MHV amplitudes and components of NMHV amplitudes to all multiplicities. We represent the double pentagon as a two-fold $mathrm{d} log$ integral of a one-loop hexagon, and the non-trivial part of the integration lies at rationalizing square roots contained in the latter. We obtain a remarkably compact algebraic words which contain $6$ algebraic letters for each of the $16$ square roots, and they all nicely cancel in combinations for MHV amplitudes and NMHV components which are free of square roots. In addition to $96$ algebraic letters, the alphabet consists of $152$ dual conformal invariant combinations of rational letters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا