ترغب بنشر مسار تعليمي؟ اضغط هنا

Direct observation of how the heavy fermion state develops in CeCoIn5

82   0   0.0 ( 0 )
 نشر من قبل Donglai Feng
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Heavy fermion materials gain high electronic masses and expand Fermi surfaces when the high-temperature localized f electrons become itinerant and hybridize with the conduction band at low temperatures. However, despite the common application of this model, direct microscopic verification remains lacking. Here we report high-resolution angle-resolved photoemission spectroscopy measurements on CeCoIn5, a prototypical heavy fermion compound, and reveal the long-sought band hybridization and Fermi surface expansion. Unexpectedly, the localized-to-itinerant transition occurs at surprisingly high temperatures, yet f electrons are still largely localized at the lowest temperature. Moreover, crystal field excitations likely play an important role in the anomalous temperature dependence. Our results paint an comprehensive unanticipated experimental picture of the heavy fermion formation in a periodic multi-level Anderson/Kondo lattice, and set the stage for understanding the emergent properties in related materials.

قيم البحث

اقرأ أيضاً

There are two prerequisites for understanding high-temperature (high-T$_c$) superconductivity: identifying the pairing interaction and a correct description of the normal state from which superconductivity emerges. The nature of the normal state of i ron-pnictide superconductors, and the role played by correlations arising from partially screened interactions, are still under debate. Here we show that the normal state of carefully annealed electron-doped BaFe$_{2-x}$Co$_{x}$As$_2$ at low temperatures has all the hallmark properties of a local Fermi liquid, with a more incoherent state emerging at elevated temperatures, an identification made possible using bulk-sensitive optical spectroscopy with high frequency and temperature resolution. The frequency dependent scattering rate extracted from the optical conductivity deviates from the expected scaling $M_{2}(omega,T)propto(hbaromega)^{2}+(ppi k_{B}T)^{2}$ with $papprox$ 1.47 rather than $p$ = 2, indicative of the presence of residual elastic resonant scattering. Excellent agreement between the experimental results and theoretical modeling allows us to extract the characteristic Fermi liquid scale $T_{0}approx$ 1700 K. Our results show that the electron-doped iron-pnictides should be regarded as weakly correlated Fermi liquids with a weak mass enhancement resulting from residual electron-electron scattering from thermally excited quasi-particles.
We report a systematic study of temperature- and field-dependent charge ($boldsymbol{rho}$) and entropy ($mathbf{S}$) transport in the heavy-fermion superconductor CeIrIn$_5$. Its large positive thermopower $S_{xx}$ is typical of Ce-based Kondo latti ce systems, and strong electronic correlations play an important role in enhancing the Nernst signal $S_{xy}$. By separating the off-diagonal Peltier coefficient $alpha_{xy}$ from $S_{xy}$, we find that $alpha_{xy}$ becomes positive and greatly enhanced at temperatures well above the bulk $T_c$. Compared with the non-magnetic analog LaIrIn$_5$, these results suggest vortexlike excitations in a precursor state to unconventional superconductivity in CeIrIn$_5$. This study sheds new light on the similarity of heavy-fermion and cuprate superconductors and on the possibility of states not characterized by the amplitude of an order parameter.
Quantum well states appear in metallic thin films due to the confinement of the wave function by the film interfaces. Using angle-resolved photoemission spectroscopy, we unexpectedly observe quantum well states in fractured single crystals of CeCoIn$ _5$. We confirm that confinement occurs by showing that these states binding energies are photon-energy independent and are well described with a phase accumulation model, commonly applied to quantum well states in thin films. This indicates that atomically flat thin films can be formed by fracturing hard single crystals. For the two samples studied, our observations are explained by free-standing flakes with thicknesses of 206 and 101 r{A}. We extend our analysis to extract bulk properties of CeCoIn$_5$. Specifically, we obtain the dispersion of a three-dimensional band near the zone center along in-plane and out-of-plane momenta. We establish part of its Fermi surface, which corresponds to a hole pocket centered at $Gamma$. We also reveal a change of its dispersion with temperature, a signature that may be caused by the Kondo hybridization.
The tilted balance among competing interactions can yield a rich variety of ground states of quantum matter. In most Ce-based heavy fermion systems, this can often be qualitatively described by the famous Doniach phase diagram, owing to the competiti on between the Kondo screening and the Ruderman-Kittel-Kasuya-Yoshida exchange interaction. Here, we report an unusual pressure-temperature phase diagram beyond the Doniach one in CeCuP2. At ambient pressure, CeCuP2 displays typical heavy-fermion behavior, albeit with a very low carrier density. With lowering temperature, it shows a crossover from a non Fermi liquid to a Fermi liquid at around 2.4 K. But surprisingly, the Kondo coherence temperature decreases with increasing pressure, opposite to that in most Ce-based heavy fermion compounds. Upon further compression, two superconducting phases are revealed. At 48.0 GPa, the transition temperature reaches 6.1 K, the highest among all Ce-based heavy fermion superconductors. We argue for possible roles of valence tuning and fluctuations associated with its special crystal structure in addition to the hybridization effect. These unusual phase diagrams suggest that CeCuP2 is a novel platform for studying the rich heavy fermions physics beyond the conventional Doniach paradigm.
We report the observation of heavy-fermion superconducitivity in CeCoIn5 at Tc =2.3 K. When compared to the pressure-induced Tc of its cubic relative CeIn3 (Tc ~200 mK), the Tc of CeCoIn5 is remarkably high. We suggest that this difference may arise from magnetically mediated superconductivity in the layered crystal structure of CeCoIn5 .
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا