ﻻ يوجد ملخص باللغة العربية
SmB6 has been predicted and verified as a prototype of topological Kondo insulators (TKIs). Here we report longitudinal magnetoresistance and Hall coefficient measurements on co-sputtered nanocrystalline SmB6 films and try to find possible signatures of their topological properties. The magnetoresistance (MR) at 2 K is positive and linear (LPMR) at low field and becomes negative and quadratic at higher field. While the negative part is known from the reduction of the hybridization gap due to Zeeman splitting, the positive dependence is similar to what has been observed in other topological insulators (TI). We conclude that the LPMR is a characteristic feature of TI and is related to the linear dispersion near the Dirac cone. The Hall resistance shows a sign change around 50 K. It peaks and becomes nonlinear at around 10 K then decreases below 10 K. This indicates that carriers with opposite signs emerge below 50 K. Two films with different geometries (thickness and lateral dimension) show contrasting behavior below and above 50K, which proves the surface origin of the low temperature carriers in these films. The temperature dependence of magnetoresistance and the Hall data indicates that the surface states are likely non-trivial.
Samarium hexaboride is a candidate for the topological Kondo insulator state, in which Kondo coherence is predicted to give rise to an insulating gap spanned by topological surface states. Here we investigate the surface and bulk electronic propertie
The proximity effect at the interface between a topological insulator (TI) and a superconductor is predicted to give rise to chiral topological superconductivity and Majorana fermion excitations. In most TIs studied to date, however, the conducting b
Utilizing Corbino disc structures, we have examined the magnetic field response of resistivity for the surface states of SmB6 on different crystalline surfaces at low temperatures. Our results reveal a hysteretic behavior whose magnitude depends on t
Topological insulators are a class of materials with insulating bulk but protected conducting surfaces due to the combination of spin-orbit interactions and time-reversal symmetry. The surface states are topologically non-trivial and robust against n
We investigated the nature of transport and magnetic properties in SrIr0.5Ru0.5O3, (SIRO) which has characteristics intermediate between a correlated non-Fermi liquid state and an itinerant Fermi liquid state, by growing perovskite thin films on vari