ﻻ يوجد ملخص باللغة العربية
Starting from realistic nuclear forces, the chiral N$^3$LO and JISP16, we have applied many-body perturbation theory (MBPT) to the structure of closed-shell nuclei, $^4$He and $^{16}$O. The two-body N$^3$LO interaction is softened by a similarity renormalization group transformation while JISP16 is adopted without renormalization. The MBPT calculations are performed within the Hartree-Fock (HF) bases. The angular momentum coupled scheme is used, which can reduce the computational task. Corrections up to the third order in energy and up to the second order in radius are evaluated. Higher-order corrections in the HF basis are small relative to the leading-order perturbative result. Using the anti-symmetrized Goldstone diagram expansions of the wave function, we directly correct the one-body density for the calculation of the radius, rather than calculate corrections to the occupation propabilities of single-particle orbits as found in other treatments. We compare our results with other methods where available and find good agreement. This supports the conclusion that our methods produce reasonably converged results with these interactions. We also compare our results with experimental data.
We investigate the order-by-order convergence behavior of many-body perturbation theory (MBPT) as a simple and efficient tool to approximate the ground-state energy of closed-shell nuclei. To address the convergence properties directly, we explore pe
We present a simplified method to generate the Hartree-Fock Gamow basis from realistic nuclear forces. The Hartree-Fock iteration in the harmonic-oscillator basis is first performed, and then the obtained HF potential is analytically continued to the
We exploit the many-body self-consistent Greens function method to analyze finite-temperature properties of infinite nuclear matter and to explore the behavior of the thermal index used to simulate thermal effects in equations of state for astrophysi
We discuss the construction of a nuclear Energy Density Functional (EDF) from ab initio calculations, and we advocate the need of a methodical approach that is free from ad hoc assumptions. The equations of state (EoS) of symmetric nuclear and pure n
Gamow shell model (GSM) is usually performed within the Woods-Saxon (WS) basis in which the WS parameters need to be determined by fitting experimental single-particle energies including their resonance widths. In the multi-shell case, such a fit is