ﻻ يوجد ملخص باللغة العربية
We exploit the many-body self-consistent Greens function method to analyze finite-temperature properties of infinite nuclear matter and to explore the behavior of the thermal index used to simulate thermal effects in equations of state for astrophysical applications. We show how the thermal index is both density and temperature dependent, unlike often considered, and we provide an error estimate based on our ${it ab~initio}$ calculations. The inclusion of many-body forces is found to be critical for the density dependence of the thermal index. We also compare our results to a parametrization in terms of the density dependence of the nucleon effective mass. Our study questions the validity of predictions made for the gravitational-wave signal from neutron-star merger simulations with a constant thermal index.
The detection of the GW170817 neutron star merger event has incited an intense research activity towards the understanding of the nuclear matter equation of state. In this paper we compare in particular the pressure-density relation obtained from hea
Constraints set on key parameters of the nuclear matter equation of state (EoS) by the values of the tidal deformability, inferred from GW170817, are examined by using a diverse set of relativistic and non-relativistic mean field models. These models
Starting from realistic nuclear forces, the chiral N$^3$LO and JISP16, we have applied many-body perturbation theory (MBPT) to the structure of closed-shell nuclei, $^4$He and $^{16}$O. The two-body N$^3$LO interaction is softened by a similarity ren
Determining the Equation of State (EOS) of dense neutron-rich nuclear matter is a shared goal of both nuclear physics and astrophysics. Except possible phase transitions, the density dependence of nuclear symmetry esym is the most uncertain part of t
We review the current status and recent progress of microscopic many-body approaches and phenomenological models, which are employed to construct the equation of state of neutron stars. The equation of state is relevant for the description of their s