ترغب بنشر مسار تعليمي؟ اضغط هنا

Nuclear energy density functionals grounded in ab initio calculations

403   0   0.0 ( 0 )
 نشر من قبل Francesco Marino
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss the construction of a nuclear Energy Density Functional (EDF) from ab initio calculations, and we advocate the need of a methodical approach that is free from ad hoc assumptions. The equations of state (EoS) of symmetric nuclear and pure neutron matter are computed using the chiral NNLO$_{rm sat}$ and the phenomenological AV4$^prime$+UIX$_{c}$ Hamiltonians as inputs in the Self-consistent Greens Function (SCGF) and Auxiliary Field Diffusion Monte Carlo (AFDMC) methods, respectively. We propose a convenient parametrization of the EoS as a function of the Fermi momentum and fit it on the SCGF and AFDMC calculations. We apply the ab initio-based EDF to carry out an analysis of the binding energies and charge radii of different nuclei in the local density approximation. The NNLO$_{rm sat}$-based EDF produces encouraging results, whereas the AV4$^prime$+UIX$_{c}$-based one is farther from experiment. Possible explanations of these different behaviors are suggested, and the importance of gradient and spin-orbit terms is analyzed. Our work paves the way for a practical and systematic way to merge ab initio nuclear theory and DFT, while at the same time it sheds light on some of the critical aspects of this procedure.



قيم البحث

اقرأ أيضاً

We present the first application of a new approach, proposed in [Journal of Physics G: Nuclear and Particle Physics, 43, 04LT01 (2016)] to derive coupling constants of the Skyrme energy density functional (EDF) from ab initio Hamiltonian. By perturbi ng the ab initio Hamiltonian with several functional generators defining the Skyrme EDF, we create a set of metadata that is then used to constrain the coupling constants of the functional. We use statistical analysis to obtain such an ab initio-equivalent Skyrme EDF. We find that the resulting functional describes properties of atomic nuclei and infinite nuclear matter quite poorly. This may point out to the necessity of building up the ab initio-equivalent functionals from more sophisticated generators. However, we also indicate that the current precision of the ab initio calculations may be insufficient for deriving meaningful nuclear EDFs.
138 - J. Dobaczewski 2015
I propose a simple and manageable method that allows for deriving coupling constants of model energy density functionals (EDFs) directly from ab initio calculations performed for finite fermion systems. A proof-of-principle application allows for lin king properties of finite nuclei, determined by using the nuclear nonlocal Gogny functional, to the coupling constants of the quasilocal Skyrme functional. The method does not rely on properties of infinite fermion systems but on the ab initio calculations in finite systems. It also allows for quantifying merits of different model EDFs in describing the ab initio results.
82 - M. Gennari , P. Navratil 2018
Background: The nuclear kinetic density is one of many fundamental quantities in density functional theory (DFT) dependent on the nonlocal nuclear density. Often, approximations may be made when computing the density that may result in spurious contr ibutions in other DFT quantities. With the ability to compute the nonlocal nuclear density from ab initio wave functions, it is now possible to estimate effects of such spurious contributions. Purpose: We derive the kinetic density using ab initio nonlocal scalar one-body nuclear densities computed within the no-core shell model (NCSM) approach, utilizing two- and three-nucleon chiral interactions as the sole input. With the ability to compute translationally invariant nonlocal densities, it is possible to directly gauge the impact of the spurious center-of-mass (COM) contributions in DFT quantities such as the kinetic density. Methods: The nonlocal nuclear densities are derived from the NCSM one-body densities calculated in second quantization. We present a review of COM contaminated and translationally invariant nuclear densities. We then derive an analytic expression for the kinetic density using these nonlocal densities, producing an ab initio kinetic density. Results: The ground state nonlocal densities of textsuperscript{4,6,8}He, textsuperscript{12}C, and textsuperscript{16}O are used to compute the kinetic densities of the aforementioned nuclei. The impact of the COM removal technique in the densities is discussed. The results of this work can be extended to other fundamental quantities in DFT. Conclusions: The use of a general nonlocal density allows for the calculation of fundamental quantities taken as input in theories such as DFT. This allows benchmarking of procedures for COM removal in different many-body techniques.
Nuclear clustering describes the appearance of structures resembling smaller nuclei such as alpha particles (4He nuclei) within the interior of a larger nucleus. While clustering is important for several well-known examples, much remains to be discov ered about the general nature of clustering in nuclei. In this letter we present lattice Monte Carlo calculations based on chiral effective field theory for the ground states of helium, beryllium, carbon, and oxygen isotopes. By computing model-independent measures that probe three- and four-nucleon correlations at short distances, we determine the shape of the alpha clusters and the entanglement of nucleons comprising each alpha cluster with the outside medium. We also introduce a new computational approach called the pinhole algorithm, which solves a long-standing deficiency of auxiliary-field Monte Carlo simulations in computing density correlations relative to the center of mass. We use the pinhole algorithm to determine the proton and neutron density distributions and the geometry of cluster correlations in 12C, 14C, and 16C. The structural similarities among the carbon isotopes suggest that 14C and 16C have excitations analogous to the well-known Hoyle state resonance in 12C.
137 - X. H. Wu , Z. X. Ren , P. W. Zhao 2021
Machine learning is employed to build an energy density functional for self-bound nuclear systems for the first time. By learning the kinetic energy as a functional of the nucleon density alone, a robust and accurate orbital-free density functional f or nuclei is established. Self-consistent calculations that bypass the Kohn-Sham equations provide the ground-state densities, total energies, and root-mean-square radii with a high accuracy in comparison with the Kohn-Sham solutions. No existing orbital-free density functional theory comes close to this performance for nuclei. Therefore, it provides a new promising way for future developments of nuclear energy density functionals for the whole nuclear chart.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا