ترغب بنشر مسار تعليمي؟ اضغط هنا

Phonon-Dressed Two-Dimensional Carriers on the ZnO Surface

48   0   0.0 ( 0 )
 نشر من قبل Ryu Yukawa Dr.
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Two-dimensional (2D) metallic states formed on the ZnO(10$bar{1}$0) surface by hydrogen adsorption have been investigated using angle-resolved photoelectron spectroscopy (ARPES). The observed metallic state is characterized by a peak-dip-hump structure at just below the Fermi level and a long tail structure extending up to 600 meV in binding energy. The peak and hump positions are separated by about 70 meV, a value close to the excitation energy of longitudinal optical (LO) phonons. Spectral functions formulated on the basis of the 2D electron-phonon coupling well reproduce the ARPES intensity distribution of the metallic states. This spectral analysis suggests that the 2D electrons accumulated on the ZnO surface couple to the LO phonons and that this coupling is the origin of the anomalous long tail. Our results indicate that the 2D electrons at the ZnO surface are described as the electron liquid model.

قيم البحث

اقرأ أيضاً

Much progress has been made recently in the study of the effects of electron-phonon (el-ph) coupling in doped insulators using angle resolved photoemission (ARPES), yielding evidence for the dominant role of el-ph interactions in underdoped cuprates. As these studies have been limited to doped Mott insulators, the important question arises how this compares with doped band insulators where similar el-ph couplings should be at work. The archetypical case is the perovskite SrTiO$_3$ (STO), well known for its giant dielectric constant of 10000 at low temperature, exceeding that of La$_2$CuO$_4$ by a factor of 500. Based on this fact, it has been suggested that doped STO should be the archetypical bipolaron superconductor. Here we report an ARPES study from high-quality surfaces of lightly doped SrTiO$_3$. Comparing to lightly doped Mott insulators, we find the signatures of only moderate electron-phonon coupling: a dispersion anomaly associated with the low frequency optical phonon with a $lambdasim0.3$ and an overall bandwidth renormalization suggesting an overall $lambdasim0.7$ coming from the higher frequency phonons. Further, we find no clear signatures of the large pseudogap or small polaron phenomena. These findings demonstrate that a large dielectric constant itself is not a good indicator of el-ph coupling and highlight the unusually strong effects of the el-ph coupling in doped Mott insulators.
One of the distinctive features of hole-doped cuprate superconductors is the onset of a `pseudogap below a temperature $T^*$. Recent experiments suggest that there may be a connection between the existence of the pseudogap and the topology of the Fer mi surface. Here, we address this issue by studying the two-dimensional Hubbard model with two distinct numerical methods. We find that the pseudogap only exists when the Fermi surface is hole-like and that, for a broad range of parameters, its opening is concomitant with a Fermi surface topology change from electron- to hole-like. We identify a common link between these observations: the pole-like feature of the electronic self-energy associated with the formation of the pseudogap is found to also control the degree of particle-hole asymmetry, and hence the Fermi surface topology transition. We interpret our results in the framework of an SU(2) gauge theory of fluctuating antiferromagnetism. We show that a mean-field treatment of this theory in a metallic state with U(1) topological order provides an explanation of this pole-like feature, and a good description of our numerical results. We discuss the relevance of our results to experiments on cuprates.
We theoretically investigate magnon-phonon hybrid excitations in two-dimensional ferromagnets. The bulk bands of hybrid excitations, which are referred to as magnon-polarons, are analytically shown to be topologically nontrivial, possessing finite Ch ern numbers. We also show that the Chern numbers of magnon-polaron bands and the number of band-crossing lines can be manipulated by an external magnetic field. For experiments, we propose to use the thermal Hall conductivity as a probe of the finite Berry curvatures of magnon-polarons. Our results show that a simple ferromagnet on a square lattice supports topologically nontrivial magnon-polarons, generalizing topological excitations in conventional magnetic systems.
We have performed Raman scattering measurements on BiFeO3 nanoparticles and studied both magnetic and lattice modes. We reveal strong anomalies between 140 K and 200 K in the frequency of magnon and E(LO1), E(TO1) and A1(LO1) phonon modes. These anom alies are related to a surface expansion and are enhanced for nanoparticle sizes approaching the spin cycloidal length. These observations point out the strong interplay between the surface, the lattice, and the magnetism for sizes of BiFeO3 nanoparticles close to the cycloid periodicity.
56 - A. Foussats , A. Greco , M. Bejas 2006
We consider possible routes to superconductivity in hydrated cobaltates Na_xCoO_2.yH_2O on the basis of the t-J-V model plus phonons on the triangular lattice. We studied the stability conditions for the homogeneous Fermi liquid (HFL) phase against d ifferent broken symmetry phases. Besides the sqrt(3)xsqrt(3)-CDW phase, triggered by the nearest-neighbour Coulomb interaction V, we have found that the HFL is unstable, at very low doping, against a bond-ordered phase due to J. We also discuss the occurrence of phase separation at low doping and V. The interplay between the electron-phonon interaction and correlations near the sqrt(3)xsqrt(3)-CDW leads to superconductivity in the unconventional next-nearest neighbour f-wave (NNN-f) channel with a dome shape for Tc around x ~ 0.35, and with values of a few Kelvin as seen in experiments. Near the bond-ordered phase at low doping we found tendencies to superconductivity with d-wave symmetry for finite J and x<0.15. Contact with experiments is given along the paper.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا