ترغب بنشر مسار تعليمي؟ اضغط هنا

Impact of the surface phase transition on magnon and phonon excitations in BiFeO3 nanoparticles

43   0   0.0 ( 0 )
 نشر من قبل Maximilien Cazayous
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have performed Raman scattering measurements on BiFeO3 nanoparticles and studied both magnetic and lattice modes. We reveal strong anomalies between 140 K and 200 K in the frequency of magnon and E(LO1), E(TO1) and A1(LO1) phonon modes. These anomalies are related to a surface expansion and are enhanced for nanoparticle sizes approaching the spin cycloidal length. These observations point out the strong interplay between the surface, the lattice, and the magnetism for sizes of BiFeO3 nanoparticles close to the cycloid periodicity.

قيم البحث

اقرأ أيضاً

Raman scattering measurements on BiFeO3 single crystals show an important coupling between the magnetic order and lattice vibrations. The temperature evolution of phonons shows that the lowest energy E and A1 phonon modes are coupled to the spin orde r up to the Neel temperature. Furthermore, low temperature anomalies associated with the spin re-orientation are observed simultaneously in both the E phonon and the magnon. These results suggest that magnetostriction plays an important role in BiFeO3.
Photo-induced phase transitions have been intensively studied owing to the ability to control a material of interest in the ultrafast manner, which can induce exotic phases unable to be attained at equilibrium. However, the key mechanisms are still u nder debate, and it has currently been a central issue how the couplings between the electron, lattice, and spin degrees of freedom are evolving during photo-induced phase transitions. Here, we develop a new analysis method, frequency-domain angle-resolved photoemission spectroscopy, to gain precise insight into electron-phonon couplings during photo-induced insulator-to-metal transitions for Ta$_2$NiSe$_5$. We demonstrate that multiple coherent phonons generated by displacive excitations show band-selective coupling to the electrons. Furthermore, we find that the lattice modulation corresponding to the 2 THz phonon mode, where Ta lattice is sheared along the a-axis, is the most relevant for the photo-induced semimetallic state.
Transition metal dichalcogenides (TMDs) are a class of widely studied 2D layered materials which exist in various polymorphs. The 1T phase of MoTe2 is of prime importance as it has been reported to show quantum spin hall (QSH) behavior with a fairly large band-gap of ~ 60 meV, in contrast to most QSH materials known. It is noteworthy that though the monolayer 1T-MoTe2 was initially predicted to show the QSH behavior, recent theoretical studies claim that the few-layered counterparts also exhibit higher order topological behavior. Besides, 1T-MoTe2 also undergoes a hysteretic phase transition to the Td phase (which is a type-II Weyl semimetal) by breaking the inversion symmetry of the crystal. While the phase transition between these two topological phases is of utmost importance, its study has been mostly restricted to bulk single crystal flakes, thereby not sufficiently exploring the effect of dimensionality. We have studied the phase transition in 1T-MoTe2 as a function of flake-thickness. Though our Raman studies show a suppression of the phase transition in the thin (thickness <10 nm) flakes [similar to the report Phys. Rev. B 97, 041410 (2018)], we have experimentally demonstrated the possibility of stabilizing the desired phase (1T or Td) at room temperature by charge doping. Further, we have observed clear signatures of electron-phonon coupling in MoTe2, which evolves as a function of flake-thickness and charge doping.
In this report we show that in the perovskite manganite La_{1-x}Ca_{x}MnO_3 for a fixed x approx 0.33, the magnetic transition changes over from first order to second order on reducing the particle size to nearly few tens of a nanometer. The change-o ver is brought about only by reducing the size and with no change in the stoichiometry. The size reduction to an average size of about 15 nm retains the ferromagnetic state albeit with somewhat smaller saturation magnetization and the ferromagnetic transition temperature T_{C} is suppressed by a small amount (4%). The magnetization of the nanoparticles near T_{C} follow the scaling equation $M/|epsilon|^beta = f_pm(H/|epsilon|^{gamma+beta})$, where, $epsilon = |T-T_C|/T_C$. The critical exponents, associated with the transition have been obtained from modified Arrott plots and they are found to be $beta=0.47pm 0.01$ and $gamma=1.06pm 0.03$. From a plot of M vs H at T_{C} we find the exponent $delta=3.10 pm 0.13$. All the exponents are close to the mean field values. The change-over of the order of the transition has been attributed to a lowering of the value of the derivative dT_{C}/dP due to an increased pressure in the nanoparticles arising due to size reduction. This effect acts in tandem with the rounding off effect due to random strain in the nanoparticles.
211 - Song Bao , Zhengwei Cai , Wenda Si 2020
We perform thermodynamic and inelastic neutron scattering (INS) measurements to study the lattice dynamics (phonons) of a cubic collinear antiferromagnet Cu$_3$TeO$_6$ which hosts topological spin excitations (magnons). While the specific heat and th ermal conductivity results show that the thermal transport is dominated by phonons, the deviation of the thermal conductivity from a pure phononic model indicates that there is a strong coupling between magnons and phonons. In the INS measurements, we find a mode in the excitation spectra at 4.5 K, which exhibits a slight downward dispersion around the Brillouin zone center. This mode disappears above the N{e}el temperature, and thus cannot be a phonon. Furthermore, the dispersion is distinct from that of a magnon. Instead, it can be explained by the magnon-polaron mode, which is new collective excitations resulting from the hybridization between magnons and phonons. We consider the suppression of the thermal conductivity and emergence of the magnon-polaron mode to be evidence for magnon-phonon coupling in Cu$_3$TeO$_6$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا