ﻻ يوجد ملخص باللغة العربية
One of the distinctive features of hole-doped cuprate superconductors is the onset of a `pseudogap below a temperature $T^*$. Recent experiments suggest that there may be a connection between the existence of the pseudogap and the topology of the Fermi surface. Here, we address this issue by studying the two-dimensional Hubbard model with two distinct numerical methods. We find that the pseudogap only exists when the Fermi surface is hole-like and that, for a broad range of parameters, its opening is concomitant with a Fermi surface topology change from electron- to hole-like. We identify a common link between these observations: the pole-like feature of the electronic self-energy associated with the formation of the pseudogap is found to also control the degree of particle-hole asymmetry, and hence the Fermi surface topology transition. We interpret our results in the framework of an SU(2) gauge theory of fluctuating antiferromagnetism. We show that a mean-field treatment of this theory in a metallic state with U(1) topological order provides an explanation of this pole-like feature, and a good description of our numerical results. We discuss the relevance of our results to experiments on cuprates.
A precursor effect on the Fermi surface in the two-dimensional Hubbard model at finite temperatures near the antiferromagnetic instability is studied using three different itinerant approaches: the second order perturbation theory, the paramagnon the
We present an exact diagonalization study of the self-energy of the two-dimensional Hubbard model. To increase the range of available cluster sizes we use a corrected t-J model to compute approximate Greens functions for the Hubbard model. This allow
The repulsive Fermi Hubbard model on the square lattice has a rich phase diagram near half-filling (corresponding to the particle density per lattice site $n=1$): for $n=1$ the ground state is an antiferromagnetic insulator, at $0.6 < n lesssim 0.8$,
One of the fundamental questions about the high temperature cuprate superconductors is the size of the Fermi surface (FS) underlying the superconducting state. By analyzing the single particle spectral function for the Fermi Hubbard model as a functi
Using the recently introduced multiloop extension of the functional renormalization group, we compute the frequency- and momentum-dependent self-energy of the two-dimensional Hubbard model at half filling and weak coupling. We show that, in the trunc