ﻻ يوجد ملخص باللغة العربية
Upon combining Northrops picture of charged particle motion with modern liquid crystal theories, this paper provides a new description of guiding center dynamics (to lowest order). This new perspective is based on a rotation gauge field (gyrogauge) that encodes rotations around the magnetic field. In liquid crystal theory, an analogue rotation field is used to encode the rotational state of rod-like molecules. Instead of resorting to sophisticated tools (e.g. Hamiltonian perturbation theory and Lie series expansions) that still remain essential in higher-order gyrokinetics, the present approach combines the WKB method with a simple kinematical ansatz, which is then replaced into the charged particle Lagrangian. The latter is eventually averaged over the gyrophase to produce Littlejohns guiding-center equations. A crucial role is played by the vector potential for the gyrogauge field. A similar vector potential is related to liquid crystal defects and is known as `wryness tensor in Eringens micropolar theory.
The low-frequency limit of Maxwell equations is considered in the Maxwell-Vlasov system. This limit produces a neutral Vlasov system that captures essential features of plasma dynamics, while neglecting radiation effects. Euler-Poincare reduction the
Coulomb collisions in plasmas are typically modeled using the Boltzmann collision operator, or its variants, which apply to weakly magnetized plasmas in which the typical gyroradius of particles significantly exceeds the Debye length. Conversely, ONe
A generalized Ohms law is derived to treat strongly magnetized plasmas in which the electron gyrofrequency significantly exceeds the electron plasma frequency. The frictional drag due to Coulomb collisions between electrons and ions is found to shift
Difficulties in founding microscopically the Vlasov equation for Coulomb-interacting particles are recalled for both the statistical approach (BBGKY hierarchy and Liouville equation on phase space) and the dynamical approach (single empirical measure
Within the framework of liquid crystal flows, the Qian & Sheng (QS) model for Q-tensor dynamics is compared to the Volovik & Kats (VK) theory of biaxial nematics by using Hamiltons variational principle. Under the assumption of rotational dynamics fo