ﻻ يوجد ملخص باللغة العربية
Difficulties in founding microscopically the Vlasov equation for Coulomb-interacting particles are recalled for both the statistical approach (BBGKY hierarchy and Liouville equation on phase space) and the dynamical approach (single empirical measure on one-particle $(mathbf{r},mathbf{v})$-space). The role of particle trajectories (characteristics) in the analysis of the partial differential Vlasov--Poisson system is stressed. Starting from many-body dynamics, a direct derivation of both Debye shielding and collective behaviour is sketched.
To model momentum exchange in nonlinear wave-particle interaction, as in amplification devices like traveling-wave tubes, we use an $N$-body self-consistent hamiltonian description based on Kuznetsovs discrete model, and we provide new formulations f
We introduce a new matter action principle, with a wide range of applicability, for the Vlasov equation in terms of a conjugate pair of functions. Here we apply this action principle to the study of matter in Bianchi cosmological models in general re
Different variants of hybrid kinetic-fluid models are considered for describing the interaction of a bulk fluid plasma obeying MHD and an energetic component obeying a kinetic theory. Upon using the Vlasov kinetic theory for energetic particles, two
Upon combining Northrops picture of charged particle motion with modern liquid crystal theories, this paper provides a new description of guiding center dynamics (to lowest order). This new perspective is based on a rotation gauge field (gyrogauge) t
Motivated by recent discussions on the possible role of quantum computation in plasma simulations, here we present different approaches to Koopmans Hilbert-space formulation of classical mechanics in the context of Vlasov-Maxwell kinetic theory. The