ترغب بنشر مسار تعليمي؟ اضغط هنا

Neutral Vlasov kinetic theory of magnetized plasmas

176   0   0.0 ( 0 )
 نشر من قبل Cesare Tronci
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The low-frequency limit of Maxwell equations is considered in the Maxwell-Vlasov system. This limit produces a neutral Vlasov system that captures essential features of plasma dynamics, while neglecting radiation effects. Euler-Poincare reduction theory is used to show that the neutral Vlasov kinetic theory possesses a variational formulation in both Lagrangian and Eulerian coordinates. By construction, the model recovers all collisionless neutral models employed in plasma simulations. Then, comparisons between the neutral Vlasov system and hybrid kinetic-fluid models are presented in the linear regime.

قيم البحث

اقرأ أيضاً

Coulomb collisions in plasmas are typically modeled using the Boltzmann collision operator, or its variants, which apply to weakly magnetized plasmas in which the typical gyroradius of particles significantly exceeds the Debye length. Conversely, ONe il has developed a kinetic theory to treat plasmas that are so strongly magnetized that the typical gyroradius of particles is much smaller than the distance of closest approach in a binary collision. Here, we develop a generalized collision operator that applies across the full range of magnetization strength. To demonstrate novel physics associated with strong magnetization, it is used to compute the friction force on a massive test charge. In addition to the traditional stopping power component, this is found to exhibit a transverse component that is perpendicular to both the velocity and Lorentz force vectors in the strongly magnetized regime, as was predicted recently using linear response theory. Good agreement is found between the collision theory and linear response theory in the regime in which both apply, but the new collision theory also applies to stronger magnetization strength regimes than the linear response theory is expected to apply in.
Plasmas that are strongly magnetized in the sense that the gyrofrequency exceeds the plasma frequency exhibit novel transport properties that are not well understood. As a representative example, we compute the friction force acting on a massive test charge moving through a strongly coupled and strongly magnetized one-component plasma using a generalized Boltzmann kinetic theory. Recent works studying the weakly coupled regime have shown that strong magnetization leads to a transverse component of the friction force that is perpendicular to both the Lorentz force and velocity of the test charge; in addition to the stopping power component aligned antiparallel to the velocity. Recent molecular dynamics simulations have also shown that strong Coulomb coupling in addition to strong magnetization gives rise to a third component of the friction force in the direction of the Lorentz force. Here, we show that the generalized Boltzmann kinetic theory captures these effects, and generally agrees well with the molecular dynamics simulations over a broad range of Coulomb coupling and magnetization strength regimes. The theory is also used to show that a gyro component of the friction in the direction of the Lorentz force arises due to asymmetries associated with gyromotion during short-range collisions. Computing the average motion of the test charge through the background plasma, the transverse force is found to strongly influence the trajectory by changing the gyroradius and the gyro friction force is found to slightly change the gyrofrequency of the test charge resulting in a phase shift.
219 - Cesare Tronci , Ilon Joseph 2021
Motivated by recent discussions on the possible role of quantum computation in plasma simulations, here we present different approaches to Koopmans Hilbert-space formulation of classical mechanics in the context of Vlasov-Maxwell kinetic theory. The celebrated Koopman-von Neumann construction is provided with two different Hamiltonian structures: one is canonical and recovers the usual Clebsch representation of the Vlasov density, the other is noncanonical and appears to overcome certain issues emerging in the canonical formalism. Furthermore, the canonical structure is restored for a variant of the Koopman-von Neumann construction that carries a different phase dynamics. Going back to van Hoves prequantum theory, the corresponding Koopman-van Hove equation provides an alternative Clebsch representation which is then coupled to the electromagnetic fields. Finally, the role of gauge transformations in the new context is discussed in detail.
Collisionless shocks are common features in space and astrophysical systems where supersonic plasma flows interact, such as in the solar wind, the heliopause, and supernova remnants. Recent experimental capabilities and diagnostics allow detailed lab oratory investigations of high-Mach-number shocks, which therefore can become a valuable way to understand shock dynamics in various astrophysical environments. Using 2D particle-in-cell simulations with a Coulomb binary collision operator, we demonstrate the mechanism for generation of energetic electrons and experimental requirements for detecting this process in the laboratory high-Mach-number collisionless shocks. We show through a parameter study that electron acceleration by magnetized collisionless shocks is feasible in laboratory experiments with laser-driven expanding plasmas.
When a steady-state cylindrical plasma discharge is centrally fuelled, the collisionless radial electron flux is canonically coupled to an axial current. The identification and analysis of this transport driven current, previously reported in collisi onless simulations [W. J. Nunan and J. M. Dawson, Phys. Rev. Lett. $mathbf{73}$, 1628 (1994)], is addressed analytically and extended to the collisional regime by means of first-principles kinetic models. Collisionless radial transport is described with the standard quasilinear model and collisional velocity anisotropy relaxation with the Landau kinetic equation. When trapped particles corrections are taken into account, the solution of this kinetic model provides the analytical expression for the transport driven current in a centrally fuelled steady-state tokamak as a function of the thermonuclear power and discharge parameters. For ITER type discharges, with central fuelling, a current of about one mega-ampere is predicted by this first-principles analytical kinetic model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا