ﻻ يوجد ملخص باللغة العربية
We consider Galton-Watson branching processes with countable typeset $mathcal{X}$. We study the vectors ${bf q}(A)=(q_x(A))_{xinmathcal{X}}$ recording the conditional probabilities of extinction in subsets of types $Asubseteq mathcal{X}$, given that the type of the initial individual is $x$. We first investigate the location of the vectors ${bf q}(A)$ in the set of fixed points of the progeny generating vector and prove that $q_x({x})$ is larger than or equal to the $x$th entry of any fixed point, whenever it is different from 1. Next, we present equivalent conditions for $q_x(A)< q_x (B)$ for any initial type $x$ and $A,Bsubseteq mathcal{X}$. Finally, we develop a general framework to characterise all emph{distinct} extinction probability vectors, and thereby to determine whether there are finitely many, countably many, or uncountably many distinct vectors. We illustrate our results with examples, and conclude with open questions.
We consider an indecomposable Galton-Watson branching process with countably infinitely many types. Assuming that the process is critical and allowing for infinite variance of the offspring sizes of some (or all) types of particles we describe the as
Given a branching random walk on a set $X$, we study its extinction probability vectors $mathbf q(cdot,A)$. Their components are the probability that the process goes extinct in a fixed $Asubseteq X$, when starting from a vertex $xin X$. The set of e
We extend the branching process based numerical algorithm of Bouchard et al. [3], that is dedicated to semilinear PDEs (or BSDEs) with Lipschitz nonlinearity, to the case where the nonlinearity involves the gradient of the solution. As in [3], this r
Recently in Barczy, Li and Pap (2015), the notion of a multi-type continuous-state branching process (with immigration) having d-types was introduced as a solution to an d-dimensional vector- valued SDE. Preceding that, work on affine processes, orig
We introduce and study the dynamics of an emph{immortal} critical branching process. In the classic, critical branching process, particles give birth to a single offspring or die at the same rates. Even though the average population is constant in ti